Sperm and Spermatozoa Characteristics in the Siberian Sturgeon

  • Martin Pšenička
  • Andrzej Ciereszko


Sperm and spermatozoa in Siberian sturgeon are very interesting and specific from several points of view. Siberian sturgeon usually produces high volume of semen with relatively low sperm and protein concentration, which is partially explained by the atypical testicular morphology where spermatozoa are mixed with urine during passage through the kidneys to the Wolffian ducts. Sodium and chloride ions contribute most to the osmolality of the seminal fluid. Potassium ions are critical for immobilization of spermatozoa, while its antagonist is calcium ion, which triggers spermatozoa motility. The motility period is relatively long (2–3 min) with flagellum beat frequency about 50 Hz. The main characteristics of sturgeon spermatozoa are an elongated head with an acrosome containing acrosomal proteins. The flagellum is equipped with a fin for more efficient movement. During penetration into the egg micropyle, the acrosome undergoes acrosomal reactions, which include formation of fertilization filament and opening of posterolateral projections. The fertilization filament activates the egg and causes the formation of a perivitelline space, while the posterolateral projections serve as an anchor against release from the micropyle. The acrosomal reaction has been recognized to be important for fertilization and development.


Semen composition Spermatozoon ultrastructure Acrosomal reaction Siberian sturgeon 



The study was financially supported by COST Office (Food and Agriculture COST Action FA1205: AQUAGAMETE); by the Ministry of Education, Youth and Sports of the Czech Republic, projects “CENAKVA” (No. CZ.1.05/2.1.00/01.0024) and “CENAKVA II” (No. LO1205 under the NPU I program); and by the Czech Science Foundation (No. P502/13/26952S), the National Science Centre granted for research project (No. 2011/01/D/NZ9/03738) and funds appropriated to Institute of Animal Reproduction and Food Research. Authors also express thanks to prof. MSc. William L. Shelton, PhD, for English corrections.


  1. Alavi SMH, Hatef A, Pšenička M et al (2012b) Sperm biology and control of reproduction in sturgeon: (II) sperm morphology, acrosome reaction, motility and cryopreservation. Rev Fish Biol Fisher 22:861–886CrossRefGoogle Scholar
  2. Alavi SMH, Rodina M, Gela D et al (2012a) Sperm biology and control of reproduction in sturgeon: (I) testicular development, sperm maturation and seminal plasma characteristics. Rev Fish Biol Fisher 22:695–717CrossRefGoogle Scholar
  3. Baccetti B (1979) The evolution of the acrosomal complex. In: Fawcett DW, Bedford JM (eds) The spermatozoon. Urban and Schwarzenberg, Baltimore-Munich, pp 305–329Google Scholar
  4. Baccetti B (1986) Evolutionary trends in sperm structure. Comp Biochem Physiol A 85:29–36CrossRefPubMedGoogle Scholar
  5. Baccetti B, Afzelius BA (1976) The biology of the sperm cell. Monogr Dev Biol 10:1–4Google Scholar
  6. Baccetti B, Burrini AG, Callaini G et al (1984) Fish germinal cell. I. Comparative spermatology of seven cyprinid species. Gamete Res 10:373–396CrossRefGoogle Scholar
  7. Baccetti B, Burrini AG, Collodel G et al (1989) Localization of acrosomal enzymes in arthropoda, echinodermata and vertebrata. J Submicrosc Cytol Pathol 21(2):385–389PubMedGoogle Scholar
  8. Billard R (1970) Ultrastructure comparée de spermatozoides de quelques poissons téléostéens. In: Baccetti B (ed) Comparative spermatology. Academic Press, New York, pp 71–79Google Scholar
  9. Billard R, Cosson J, Fierville F et al (1999) Motility analysis and energetics of the Siberian sturgeon Acipenser baerii spermatozoa. J Appl Ichthyol 15:199–203CrossRefGoogle Scholar
  10. Billard R, Cosson J, Linhart O (2000) Changes in the flagellum morphology of intact and frozen/thawed Siberian sturgeon Acipenser baerii (Brandt) sperm during motility. Aquac Res 31:283–287CrossRefGoogle Scholar
  11. Brandon CI, Srivastava PN, Heusner GL et al (1997) Extraction and quantification of acrosin, β-Nacetylglucosaminidase, and arylsulfatase-a from equine ejaculated spermatozoa. J Exp Zoo 279:301–308CrossRefGoogle Scholar
  12. Callard GV, Callard IP (1999) Spermatogenesis in nonmammals. In: Knobil E, Neill JD (eds) Encyclopedia of reproduction IV. Academic Press, New York, pp 563–570Google Scholar
  13. Cherr GN, Clark WH (1984) An acrosome reactions in sperm from the white sturgeon, Acipenser transmontanus. J Exp Zool 232:129–139CrossRefGoogle Scholar
  14. Cherr GN, Clark WH (1985) Gamete interaction in the white sturgeon Acipenser transmontanus: a morphological and physiological review. Environ Biol Fish 14:11–22CrossRefGoogle Scholar
  15. Ciereszko A, Dabrowski K, Lin F et al (1994) Identification of trypsin-like activity in sturgeon spermatozoa. J Exp Zool 268:486–491CrossRefGoogle Scholar
  16. Ciereszko A, Dabrowski K, Ochkur SI (1996) Characterization of acrosin-like activity of lake sturgeon (Acipenser fulvescens) spermatozoa. Mol Reprod Dev 45:72–77CrossRefPubMedGoogle Scholar
  17. Cosson J, Linhart O, Mims S et al (2000) Analysis of motility parameters from paddlefish (Polyodon spathula) and shovelnose sturgeon (Scaphirhynchus platorynchus) spermatozoa. J Fish Biol 56:1348–1367CrossRefGoogle Scholar
  18. Dan JC (1967) Acrosome reaction and lysins. In: Metz CB, Monroy A (eds) Fertilization, comparative morphology, biochemistry and immunology. Academic Press, New York, pp 237–288Google Scholar
  19. Debus L, Winkler M, Billard R (2002) Structure of micropyle surface on oocytes and caviar grains in sturgeons. Internat Rev Hydrobiol 87(5-6):585–603CrossRefGoogle Scholar
  20. Dettlaff TA, Ginsburg AS, Schmalhausen OI (1993) Sturgeon fishes. Developmental biology and aquaculture. Springer-Verlag, BerlinCrossRefGoogle Scholar
  21. DiLauro MN, Kaboord W, Walsh RA (1998) Sperm-cell ultrastructure of north American sturgeons. I. The Atlantic sturgeon (Acipenser oxyrhynchus). Can J Zool-Rev Can Zool 76:1822–1836CrossRefGoogle Scholar
  22. DiLauro MN, Kaboord WS, Walsh RA (1999) Sperm-cell ultrastructure of north American sturgeons. II. The shortnose sturgeon (Acipenser brevirostrum, Lesueur, 1818). Can J Zool-Rev Can Zool 77:321–330CrossRefGoogle Scholar
  23. DiLauro MN, Kaboord WS, Walsh RA (2000) Sperm-cell ultrastructure of north American sturgeon. III. The Lake sturgeon (Acipenser fulvescens Rafinesque, 1817). Can J Zool 78:438–447CrossRefGoogle Scholar
  24. DiLauro MN, Walsh RA, Peiffer M (2001) Sperm-cell ultrastructure of north american sturgeons. IV. The pallid sturgeon (Scaphirhynchus albus Forbes and Richardson, 1905). Can J Zool-Rev Can Zool 79:802–808CrossRefGoogle Scholar
  25. Gallis JL, Fedrigo E, Jatteau P et al (1991) Siberian sturgeon spermatozoa: effects of dilution, pH, osmotic pressure, sodium and potassium ions on motility. In: Williot P (ed) Acipenser. Cemagref, Antony, France, pp 143–151Google Scholar
  26. Gillies EA, Bondarenko V, Cosson J et al (2013) Fins improve the swimming performance of fish sperm: a hydrodynamic analysis of the Siberian sturgeon Acipenser baerii. Cytoskeleton 70:85–100CrossRefPubMedGoogle Scholar
  27. Ginsburg AS (1977) Fine structure of the spermatozoon and acrosome reaction in Acipenser stellatus. In: Beljaev DK (ed) Problemy eksperimentalnoj biologii. Nauka, Moscow, pp 246–256Google Scholar
  28. Glogowski J, Kolman R, Szczepkowski M et al (2002) Fertilization rate of Siberian sturgeon (Acipenser baerii, Brandt) milt cryopreserved with methanol. Aquaculture 211:367–373CrossRefGoogle Scholar
  29. Hatef A, Alavi SMH, Noveiri SH et al (2011) Morphology and fine structure of Acipenser percius (Acipenseridae, Chondrostei) spermatozoon: interspecies comparison in Acipensiformes. Anim Reprod Sci 123:81–88CrossRefPubMedGoogle Scholar
  30. Hatef A, Alavi SMH, Rodina M et al (2012) Morphology and fine structure of the Russian sturgeon, Acipenser gueldenstaedtii (Acipenseridae, Chondrostei) spermatozoa. J Appl Ichthyol 28:978–983CrossRefGoogle Scholar
  31. Iwamatsu T, Onitake K, Yoshimoto Y, Hiramoto Y (1991) Time sequence of early events in fertilization in the medaka egg. Develop Growth Differ 33:479–490CrossRefGoogle Scholar
  32. Jamieson BGM (1991) Fish evolution and systematics: evidence from spermatozoa. Cambridge University Press, CambridgeGoogle Scholar
  33. Jamieson BGM (1999) Spermatozoal phylogeny of the vertebrata. In: Gagnon C (ed) The male gamete: from basic science to clinical applications. Cache River Press, Vienna, pp 303–331Google Scholar
  34. Jones PR, Butler RD (1988) Spermatozoon ultrastructure of Platichthys flesus. J Ultra Mol Struct R 98:71–82CrossRefGoogle Scholar
  35. Judycka S, Szczepkowski M, Ciereszko A et al (2015a) Characterization of Siberian sturgeon (Acipenser baerii Brandt) sperm obtained out of season. J Appl Ichthyol 31:34–40CrossRefGoogle Scholar
  36. Judycka S, Szczepkowski M, Ciereszko A et al (2015b) New extender for cryopreservation of Siberian sturgeon (Acipenser baerii) semen. Cryobiology 70:184–189CrossRefPubMedGoogle Scholar
  37. Kille RA (1960) Fertilization of lamprey egg. Exp Cell Res 20:12–27CrossRefPubMedGoogle Scholar
  38. Klemm U, Mulleresterl W, Engel W (1991) Acrosin, the peculiar sperm-specific serine protease. Hum Genet 87(6):635–641CrossRefPubMedGoogle Scholar
  39. Knobil E, Neill D (1999) Encyclopaedia of reproduction. Academic Press, New YorkGoogle Scholar
  40. Kobayashi W, Yamamoto TS (1981) Fine structure of micropylar apparatus of the chum salmon egg, with a discussion of the mechanism for blocking polyspermy. J Exp Biol 217:265–275Google Scholar
  41. Kudo S (1980) Sperm penetration and the formation of a fertilization cone in the common carp egg. Develop Growth Differ 22:403–414CrossRefGoogle Scholar
  42. Lahnsteiner F, Patzner RA (1997) Fine structure of spermatozoa of four littoral teleosts Symphodus ocellatus, Coris julis, Thalassoma pavo and Chromis chromis. J Submicr Cytol Path 29:477–485Google Scholar
  43. Li P, Hulak M, Rodina M et al (2010) Comparative protein profiles: potential molecular markers from spermatozoa of Acipenseriformes (Chondrostei, Pisces). Comp Biochem Physiol D 5:302–307Google Scholar
  44. Li P, Rodina M, Hulák M et al (2011) Physico-chemical properties and protein profiles of sperm from three freshwater chondrostean species: a comparative study among Siberian sturgeon (Acipenser baerii), sterlet (Acipenser ruthenus) and paddlefish (Polyodon spathula). J Appl Ichthyol 27:673–677CrossRefGoogle Scholar
  45. Linhart O, Kudo S (1997) Surface ultrastructure of paddlefish eggs before and after fertilization. J Fish Biol 51:573–582Google Scholar
  46. Linhartova Z, Rodina M, Nebesarova J et al (2013) Morphology and ultrastructure of beluga (Huso huso) spermatozoa and a comparison with related sturgeons. Anim Reprod Sci 137:220–229CrossRefPubMedGoogle Scholar
  47. Lopo AC (1983) Sperm-egg interaction in invertebrates. In: Hartman JF (ed) Mechanisms and control fertilization. Academic Press, New York, pp 269–324Google Scholar
  48. Lowman FG (1953) Electron microscope studies of silver salmon spermatozoa (Oncorhynchus kisutch W.) Exp Cell Res 5:335–360CrossRefPubMedGoogle Scholar
  49. Morisawa S (1995) Fine structure of spermatozoa of the hagfish Eptatretus burgeri (Agnatha). Biol Bull 189:6–12CrossRefPubMedGoogle Scholar
  50. Morisawa S (1999a) Acrosome reaction in spermatozoa of the hagfish Eptatretus burgeri (Agnatha). Develop Growth Differ 41:109–112CrossRefGoogle Scholar
  51. Morisawa S (1999b) Fine structure of micropylar region during late oogenesis in eggs of the hagfish Eptatretus burgeri (Agnatha). Develop Growth Differ 41:611–618CrossRefGoogle Scholar
  52. Morisawa S, Cherr GN (2002) Acrosome reaction in spermatozoa from hagfish (Agnatha) Eptatretus burgeri and Eptatretus stouti: acrosomal exocytosis and identification of filamentous actin. Develop Growth Differ 44:337–344CrossRefGoogle Scholar
  53. Morisawa S, Morisawa M (1988) Induction of potential for sperm motility by bicarbonate and pH in rainbow trout and chum salmon. J Exp Biol 136:13–22PubMedGoogle Scholar
  54. Nikolajczyk BS, O’Rand MG (1992) Characterization of rabbit testis β-galactosidase and arylsulfatase-a – purification and localization in spermatozoa during the acrosome reaction. Biol Reprod 46:366–378CrossRefPubMedGoogle Scholar
  55. Piros B, Glogowski J, Kolman R et al (2002) Biochemical characterization of Siberian sturgeon Acipenser baerii and sterlet Acipenser ruthenus milt plasma and spermatozoa. Fish Physiol Biochem 26:289–295CrossRefGoogle Scholar
  56. Pšenička M, Alavi SMH, Rodina M et al (2007) Morphology and ultrastructure of Siberian sturgeon, Acipenser baerii, spermatozoa using scanning and transmission electron microscopy. Biol Cell 99(2):103–115CrossRefPubMedGoogle Scholar
  57. Pšenička M, Alavi SMH, Rodina M et al (2008a) Morphology, chemical contents and physiology of chondrostean fish sperm: a comparative study between Siberian sturgeon (Acipenser baerii) and sterlet (Acipenser ruthenus). J Appl Ichthyol 24:371–377CrossRefGoogle Scholar
  58. Pšenička M, Cosson J, Alavi SMH et al (2008b) Staining of sturgeon spermatozoa with trypsin inhibitor from soybean, Alexa Fluor® 488 conjugate for visualization of sturgeon acrosome. J Appl Ichthyol 24:514–516CrossRefGoogle Scholar
  59. Pšenička M, Flajšhans M, Hulák M et al (2010b) The influence of ploidy level on ultrastructure and motility of tench (Tinca tinca L.) spermatozoa. Rev Fish Biol Fish 20(3):331–338CrossRefGoogle Scholar
  60. Pšenička M, Kašpar V, Rodina M et al (2011) Comparative study on ultrastructure and motility parameters of spermatozoa of tetraploid and hexaploid Siberian sturgeon Acipenser baerii. J Appl Ichthyol 27:683–686CrossRefGoogle Scholar
  61. Pšenička M, Rodina M, Linhart O (2010c) Ultrastructural study on fertilization process in sturgeon (Acipenser), function of acrosome and prevention of polyspermy. Anim Reprod Sci 117:147–154CrossRefPubMedGoogle Scholar
  62. Pšenička M, Těšitel J, Tesařová M et al (2010a) Size determination of Acipenser ruthenus spermatozoa in different types of electron microscopy. Micron 41:455–460CrossRefPubMedGoogle Scholar
  63. Pšenička M, Vancová M, Koubek P et al (2009) Fine structure and morphology of sterlet (Acipenser ruthenus L. 1758) spermatozoa and acrosin localization. Anim Reprod Sci 111:3–16CrossRefPubMedGoogle Scholar
  64. Sarosiek B, Ciereszko A, Rzemieniecki A et al (2004) The influence of semen cryopreservation on the release of some enzymes from Siberian sturgeon (Acipenser baerii) and sterlet (Acipenser ruthenus) spermatozoa. Arch Pol Fish 12:13–21Google Scholar
  65. Sarosiek B, Dryl K, Judycka S et al (2015) Influence of acid phosphatase and arylsulfatase inhibitor additions on fertility rate of Siberian sturgeon (Acipenser baerii Brandt, 1869). J Appl Ichthyol 31:154–148Google Scholar
  66. Sarosiek B, Glogowski J, Cejko BI et al (2014) Inhibition of β-N-acetylglucosaminidase by acetamide affects sperm motility and fertilization success of rainbow trout (Oncorhynchus mykiss) and Siberian sturgeon (Acipenser baerii). Theriogenology 81:723–732CrossRefPubMedGoogle Scholar
  67. Sarosiek B, Kowalski RK, Dryl K et al (2012) Isolation and characteristics of beta-N-acetylglucosaminidase present in rainbow trout (Oncorhynchus mykiss) and Siberian sturgeon (Acipenser baerii) milt. J Appl Ichthyol 28:984–989CrossRefGoogle Scholar
  68. Sarosiek B, Kowalski R, Glogowski J (2008) Isolation and preliminary characteristics of beta-N-acetylglucosaminidase in the sperm of Siberian sturgeon (Acipenser baerii) and rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol 24:492–496CrossRefGoogle Scholar
  69. Shaliutina A, Hulak M, Gazo I et al (2013) Effect of short-term storage on quality parameters, DNA integrity, and oxidative stress in Russian (Acipenser gueldenstaedtii) and Siberian (Acipenser baerii) sturgeon sperm. Anim Reprod Sci 139(1-4):127–135CrossRefPubMedGoogle Scholar
  70. Shapiro BM, Eddy EM (1980) When sperm meets egg: biochemical mechanisms of gamete interaction. Int Rev Cytol 66:257–302CrossRefPubMedGoogle Scholar
  71. Sieczyński P, Glogowski J, Cejko B et al (2012) Characteristics of Siberian sturgeon and sterlet sperm motility parameters compared using CASA. Arch Pol Fish 20:137–143Google Scholar
  72. Słowińska M, Liszewska E, Dietrich GJ et al (2015) Effect of season on proteases and serine protease inhibitors of Siberian sturgeon (Acipenser baerii Brandt, 1869) semen. J Appl Ichthyol 31:125–131Google Scholar
  73. Toth GP, Ciereszko A, Christ SA et al (1997) Objective analysis of sperm motility in the lake sturgeon, Acipenser fulvescens: activation and inhibition conditions. Aquaculture 154:337–348CrossRefGoogle Scholar
  74. Tsvetkova LI, Cosson J, Linhart O et al (1996) Motility and fertilizing capacity of fresh and frozen-thawed spermatozoa in sturgeons Acipenser baerii and A. ruthenus. J Appl Ichthyol 12:107–112CrossRefGoogle Scholar
  75. Urbanyi B, Horvath A, Kovacs B (2004) Successful hybridization of Acipenser species using cryopreserved sperm. Aquacult Int 12:47–56CrossRefGoogle Scholar
  76. Wei Q, Li P, Pšenička M et al (2007) Ultrastructure and morphology of spermatozoa in Chinese sturgeon (Acipenser sinensis gray 1835) using scanning and transmission electron microscopy. Theriogenology 67:1269–1278CrossRefPubMedGoogle Scholar
  77. Williot P, Kopeika EF, Goncharov BF (2000) Influence of testis state, temperature and delay in semen collection on spermatozoa motility in the cultured Siberian sturgeon (Acipenser baerii Brandt). Aquaculture 189:53–61CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Fisheries and Protection of WatersLaboratory of Germ Cells, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske BudejoviceVodnanyCzech Republic
  2. 2.Institute of Animal Reproduction and Food Research, Polish Academy of SciencesOlsztynPoland

Personalised recommendations