Olfaction and Gustation in Acipenseridae, with Special References to the Siberian Sturgeon

Chapter

Abstract

In sturgeons our knowledge about chemosensory systems is restricted by olfaction and gustation which are well developed in these fish. Data about the common chemical sense in Acipenseriformes is totally absent up to now. Basic morphology of olfactory organ is nearly identical among genera and species. It is paired structure and lies on the dorsal side of rostrum. Cuplike olfactory rosette comprises radially arranged primary lamellae (up to several dozens). Primary lamellae have secondary lamellae which vary in number. Olfactory sensory neurons are presented by ciliated, microvillous and crypt receptor cells. Olfaction is the main distant sensory system in sturgeons and plays a significant role in feeding, reproduction and, as supposed, homing. Ability to respond to food odour appears just after the beginning of exogenous feeding. Gustatory system is presented by two distinct subsystems, oral and extraoral. Taste buds are situated not only within the oral cavity, pharynx and gills but also on the lips and barbels and are absent in the rostrum and fins and over the entire trunk surface. Morphology of oral and extraoral taste buds is similar. Organic and inorganic chemicals and food extracts are highly effective taste stimuli. Oral gustatory system has a narrower spectrum of effective substances than extraoral one and has a higher specificity. Taste buds develop later than the olfactory organ. Extraoral taste buds appear first, then come oral taste buds and then larvae start feeding. The significance of basic knowledge in sturgeon olfaction and gustation for aquaculture is emphasised.

Keywords

Olfaction Gustation Chemoreception Taste buds Feeding behaviour Feeding stimulants Sex pheromones Taste preferences 

Notes

Acknowledgments

The study on sturgeon fish chemoreception was supported by the Russian Foundation for Basic Research (grant No. 13-04-00711). Manuscript preparing was supported by the Russian Science Foundation (grant No. 14-50-00029).

References

  1. Atema J (1971) Structures and functions of the sense of taste in the catfish (Ictalurus natalis). Brain Behav Evol 4:273–294PubMedCrossRefGoogle Scholar
  2. Atema J (1980) Chemical senses, chemical signals and feeding behaviour in fishes. Fish behaviour and its use in the capture and culture of fishes, Manila, pp 57–101Google Scholar
  3. Baatrup E, Doving KB (1990) Histochemical demonstration of mercury in the olfactory system of salmon (Salmo salar L.) following treatments with dietary methylmercuric chloride and dissolved mercuric chloride. Ecotoxicol Environ Saf 20:277–289PubMedCrossRefGoogle Scholar
  4. Barth AL, Justice NJ, Ngai J (1996) Asynchronous onset of odorant receptor expression in the developing zebrafish olfactory system. Neuron 16:23–34PubMedCrossRefGoogle Scholar
  5. Billard R, Lecointre G (2000) Biology and conservation of sturgeon and paddlefish. Rev Fish Biol Fish 10:355–392CrossRefGoogle Scholar
  6. Boglione C, Bronzi P, Cataldi E et al (1999) Aspects of early development in the Adriatic sturgeon Acipenser naccarii. J Appl Ichthyol 15:207–213CrossRefGoogle Scholar
  7. Boglione C, Cataldi E, Sighicelli M et al (2006) Contribution to the trophic ecology of the adriatic sturgeon Acipenser naccarii: morphological observations on mouth and head sensorial equipment. J Appl Ichthyol 22:208–212CrossRefGoogle Scholar
  8. Boiko NE, Grigor’yan RA (2002) Effect of thyroid hormones on imprinting of chemical signals at early ontogenesis of the sturgeon Acipenser gueldenstaedtii. J Evol Biochem Physiol 38(2):218–222CrossRefGoogle Scholar
  9. Boiko NE, Grigor’yan RA, Chichachev AS (1993) Obonyatel’niy imprinting u molodi russkogo osetra Acipenser gueldenstaedtii (olfactory imprinting in juveniles of Russian sturgeon, Acipenser gueldenstaedtii). Zhurnal Evolyutsionnoi Biokhimii i Fiziologii 29:509–514. (in Russian)Google Scholar
  10. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187PubMedCrossRefGoogle Scholar
  11. Burdukovskaya TG, Pronin NM (2010) Novie vidi paraziticheskih copepod roda Salmincola (Copepoda, Lernaeopodidae) iz obonyatel’nih yamok hariusovih (Thymallidae) i sigovih (Coregonidae) rib basseina oz. Baikal (new species of parasitic copepods of genus Salmincola (Copepoda, Lernaeopodidae) from the olfactory pits of Thymallidae and Coregonidae fish from Baikal basin). Izvestia Irkutskogo gosudarstvennogo universiteta, seria “Biologia. Ecologia” 3(2):20–29. (in Russian)Google Scholar
  12. Camacho S, Ostos-Garrido MV, Domezain A et al (2010) Study of the olfactory epithelium in the developing sturgeon characterization of the crypt cells. Chem Senses 35:147–156PubMedCrossRefGoogle Scholar
  13. Caprio J (1982) High sensitivity and specificity of olfactory and gustatory receptors of catfish to amino acids. In: Hara TJ (ed) Chemoreception in fishes. Elsevier Scientific Publishing Comp, Amsterdam, pp 109–134Google Scholar
  14. Caprio J, Derby CD (2008) Aquatic animal models in the study of chemoreception. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G, Firestein S, Beauchamp GK (eds) The senses: a comprehensive reference, 4: olfaction and taste. Academic Press, San Diego, pp 97–134CrossRefGoogle Scholar
  15. Chen X-Y, Arratia G (1994) Olfactory organ of Acipenseriformes and comparison with other Actinopterygians: patterns of diversity. J Morphol 222:241–267CrossRefGoogle Scholar
  16. Devitsina GV, Golovkina TV (2008) Morfologia vkusovogo apparata rotovoi polosti navagi Eleginus navaga L. i treski Gadus morhua marisalbi der. (Gadidae, Teleostei) (morphology of the gustatory apparatus of the oral cavity of navaga, Eleginus navaga L. and cod Gadus morhua marisalbi der. (Gadidae, Teleostei)). Sensornie sistemi 22(1):70–85. (in Russian)Google Scholar
  17. Devitsina GV, Golovkina TV, Rod’kin MM (2011) Features of gustatory system morphology in early juveniles of Siberian sturgeon Acipenser baerii (Acipenseridae, Acipenseriformes). J Ichthyol 51:1104–1116CrossRefGoogle Scholar
  18. Devitsina GV, Kazhlayev AA (1993) Development of chemosensory organs in Siberian sturgeon, Acipenser baeri, and stellate sturgeon, A stellatus. J Ichthyol 33:9–19Google Scholar
  19. Devitsina GV, Gadzhieva AR (1994) Morphological features of development of taste receptors in early ontogeny of the Russian sturgeon Acipenser gueldenstaedtii Brandt. Sens Syst 8(2):65–70Google Scholar
  20. Devitsina GV, Gadzhieva AR (1996) Dynamics of morphological development of gustatory system during the early ontogenesis in two representatives of acipenserids Acipenser nudiventris and A. persicus. J Ichthyol 36(8):642–653Google Scholar
  21. Devitsina GV (1977) Sravnitel’noe issledovanie morfologii obony’atel’nogo analizatora rib (comparative study of the morphology of the olfactory analyzer of fishes). Voprosy Ikhtiologii 17:129–133. (in Russian)Google Scholar
  22. Dittman AH, Quinn TP, Dickhoff WW et al (1994) Interactions between novel water, thyroxine and olfactory imprinting in underyearling coho salmon (Oncorhynchus kisutch Walbaum). Aquacult Fish Manag 25:157–169Google Scholar
  23. Dogiel A (1887) Ueber den Bau des Geruchsorgans bei Ganoiden, Knochenfischen und Amphibien. Arch Mikrosk Anat 29:74–139CrossRefGoogle Scholar
  24. Doroshenko MA, Pinchuk LE (1978) Osobennosti morfologii porazhennogo mikrosporidiami obony’atel’nogo epitelia morskih rib (morphology of the olfactory epithelium in marine fishes affected with microsporidia). Biologia Moria 3:88. (in Russian)Google Scholar
  25. Doving KB (1986) Functional properties of the fish olfactory system. In: Autrum H et al (eds) Progress in sensory physiology. Springer-Verlag, Berlin, pp 39–104Google Scholar
  26. Døving KB, Kasumyan A (2008) Chemoreception. In: Finn RN, Kapoor BG (eds) Fish larval physiology. Science Publishers, Enfield, pp 331–394Google Scholar
  27. Døving KB, Mårstøl M, Andersen JR et al (1994) Experimental evidence of chemokinesis in newly hatched cod larvae (Gadus morhua L.) Mar Biol 120:351–358CrossRefGoogle Scholar
  28. Døving KB, Stabell OB (2003) Trails in open waters: sensory cues in salmon migration. In: Collin SP, Marshall NJ (eds) Sensory processing in the aquatic environment. Springer-Verlag, New York, pp 39–52CrossRefGoogle Scholar
  29. Døving KB, Dubois-Dauphin M, Holley A et al (1977) Functional anatomy of the olfactory organ of fish and the ciliary mechanisms of water transport. Acta Zool 58:245–255CrossRefGoogle Scholar
  30. Dragomirov NI (1954) Razvitie kozhnih receptorov na nizhney storone golovi u lichinok osetra, perehodiashih k pridonnomu obrazu zhizni (development of skin receptors on the lower side of head in sturgeon larvae passing over to bottom mode of life). Dokladi Akademii Nauk SSSR 97(l):173–176. (in Russian)Google Scholar
  31. Finger TE (1976) Gustatory pathways in the bullhead catfish. I. Connections of the anterior ganglion. J Comp Neurol 165:513–526PubMedCrossRefGoogle Scholar
  32. Finger TE, Drake SK, Kotrschal K et al (1991) Postlarval growth of the peripheral gustatory system in the channel catfish, Ictalurus punctatus. J Comp Neurol 314:55–66PubMedCrossRefGoogle Scholar
  33. Finger TE, Morita Y (1985) Two gustatory systems: facial and vagal gustatory nuclei have different brainstem connections. Science 227:776–778PubMedCrossRefGoogle Scholar
  34. Glencross BD, Booth M, Allasn GL (2007) A feed is only as good as its ingredients – a review of ingredient evaluation strategies for aquaculture feeds. Aquac Nutr 13:17–34CrossRefGoogle Scholar
  35. Gomes E, Dias J, Kaushik SJ (1997) Improvement of feed intake through supplementation with an attractant mix in European sea bass fed plant protein rich diets. Aquat Living Resour 10:385–389CrossRefGoogle Scholar
  36. Goryunova VB, Shagaeva VG, Nikol’skaya MP (2000) Analysis of anomalies in the structure of larval and young acipenseridae in the Volga-Caspian basin under artificial reproduction. J Ichthyol 40:762–766Google Scholar
  37. Hansen A, Finger TE (2000) Phyletic distribution of crypt-type olfactory receptor neurons in fishes. Brain Behav Evol 55:100–110PubMedCrossRefGoogle Scholar
  38. Hansen A, Zielinski BS (2005) Diversity in the olfactory epithelium of bony fishes: development, lamellar arrangement, sensory neuron cell types and transduction components. J Neurocytol 34:183–208PubMedCrossRefGoogle Scholar
  39. Hara TJ (1994a) Olfaction and gustation: an overview. Acta Physiol Scand 152:207–217PubMedCrossRefGoogle Scholar
  40. Hara TJ (1994b) The diversity of chemical stimulation of fish olfaction and gustation. Rev Fish Biol Fish 4(1):1–35CrossRefGoogle Scholar
  41. Hara TJ (2007) Gustation fish physiology. In: Farrell AP, Brauner CJ (eds) Sensory systems neuroscience. Elsevier Press, New York, pp 45–96Google Scholar
  42. Hasler AD, Sholz AT (1983) Olfactory imprinting in salmon. Springer, New YorkCrossRefGoogle Scholar
  43. Herrick CJ (1901) The cranial nerves and cutaneous sense organs of the north American silurid fishes. J Comp Neurol Psychol 11:177–249CrossRefGoogle Scholar
  44. Hofmann MH, Bleckmann H (1997) Subdivision of the olfactory system in the sterlet Acipenser ruthenus. Neurosci Lett 233:154–156PubMedCrossRefGoogle Scholar
  45. Huesa G, Anadón R, Yánez J (2000) Olfactory projections in a chondrostean fish, Acipenser baerii: an experimental study. J Comp Neurol 428:145–158PubMedCrossRefGoogle Scholar
  46. Hustvedt SO, Storebakken T, Salte R (1991) Does oral administration of oxolinic acid or tetracycline affect feed intake of rainbow trout? Aquaculture 92:109–113CrossRefGoogle Scholar
  47. Jakubowski M, Whitear M (1990) Comparative morphology and cytology of taste buds in teleosts. Z mikrosk-anat Forsch 104(4):529–560Google Scholar
  48. Jobling M (2015) Fish nutrition research: past, present and future. Aquacult Int 23. doi: 10.1007/s10499-014-9875-2
  49. Jobling M, Gomes E, Dias J (2001) Feed types, manufacture and ingredients. In: Houlihan D, Boujard T, Jobling M (eds) Food intake in fish: feed types, manufacture and ingredients. Blackwell Science, Oxford, pp 25–48CrossRefGoogle Scholar
  50. Johnsen PB, Adams MF (1986) Chemical feeding stimulants for the herbivorous fish, Tilapia zillii. Comp Biochem Physiol 83A(1):109–112CrossRefGoogle Scholar
  51. Jones KA (1989) The palatability of amino acids and related compounds to rainbow trout, Salmo gairdneri Richardson. J Fish Biol 34:149–160. doi: 10.1111/j.1095-8649.1989.tb02964.x CrossRefGoogle Scholar
  52. Jones KA (1990) Chemical requirements of feeding in rainbow trout, Oncorhynchus mykiss (Walbaum): palatability studies on amino acids, amides, amines, alcohols, aldehydes, saccharides, and other compounds. J Fish Biol 37:413–423. doi: 10.1111/j.1095-8649.1990.tb05872.x CrossRefGoogle Scholar
  53. Jones KA (1992) Food search behaviour in fish and the use of chemical lures in commercial and sports fishing. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 288–320CrossRefGoogle Scholar
  54. Kanwal JS, Caprio J (1983) An electrophysiological investigation of the oro-pharyngeal (IX-X) taste system in the channel catfish, Ictalurus punctatus. J Comp Physiol 150A:345–357CrossRefGoogle Scholar
  55. Kanwal JS, Finger TE (1992) Central representation and projections of gustatory systems. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 79–102CrossRefGoogle Scholar
  56. Kapoor BG, Evans HE, Pevzner RA (1975) The gustatory system in fish. Adv Mar Biol 13:53–108CrossRefGoogle Scholar
  57. Kasimov RY, Mamedov CA (1988) Hemoreceptornie povedencheskie reakcii u kurinskogo osetra I beluga v rannem ontogense (chemoreceptor behavioral responses in Kura river sturgeon and beluga in early ontogenesis). Izvestia Akademii Nauk Az SSR, Seria Biologicheskie Nauki 1:68–75. (in Russian)Google Scholar
  58. Kasimov RY, Mamedov CA (1998) Vnutrividovie himicheskie signali y molodi kurinskogo osetra (interspecific chemical signals in Kura sturgeon juveniles). Izvestia Akademii Nauk Az SSR, Seria Fiziologia cheloveka i zhivotnih 54(3–4):118–121. (in Russian)Google Scholar
  59. Kasumyan AO (1999) Olfaction and taste in sturgeon behaviour. J Appl Ichthyol 15:228–232CrossRefGoogle Scholar
  60. Kasumyan AO (2004) The olfactory system in fish: structure, function, and role in behaviour. J Ichthyol 44(Suppl 2):S180–S223Google Scholar
  61. Kasumyan AO, Mamedov CA (2011) Behavioral response of mature males of Acipenseridae to female sex pheromone. J Ichthyol 51(6):457–465CrossRefGoogle Scholar
  62. Kasumyan AO, Ryg M, Døving KB (1998) Effect of amino acids on the swimming activity of newly hatched turbot larvae (Scophthalmus maximus). Mar Biol 131:189–194CrossRefGoogle Scholar
  63. Kasumyan AO, Taufik LR (1994) Behavioral reaction of juvenile sturgeons (Acipenseridae) to amino acids. J Ichthyol 34(1):90–103Google Scholar
  64. Kasumyan AO (1993) Behavioral reaction of male sturgeons to the releaser postovulatory sex pheromone of females. Doklady Biol Sci 333(1–6):439–441Google Scholar
  65. Kasumyan AO (2002) Sturgeon food searching behaviour evoked by chemical stimuli: a reliable sensory mechanism. J Appl Ichthyol 18:685–690CrossRefGoogle Scholar
  66. Kasumyan AO, Døving KB (2003) Taste preferences in fish. Fish Fish 4:289–347. doi: 10.1046/j.1467-2979.2003.00121.x CrossRefGoogle Scholar
  67. Kasumyan AO, Devitsina GV (1997) The effect of olfactory deprivation on chemosensory sensitivity and the state of taste receptors of acipenserids. J Ichthyol 37:786–798Google Scholar
  68. Kasumyan AO, Kazhlaev AA (1993a) Formation of searching behavioural reaction and olfactory sensitivity to food chemical signals during ontogeny of sturgeons (Acipenseridae). J Ichthyol 33:51–65Google Scholar
  69. Kasumyan AO, Kazhlaev AA (1993b) Behavioral responses of early juveniles of Siberian sturgeon Acipenser baerii and stellate sturgeon A. stellatus (Acipenseridae) to gustatory stimulating substances. J Ichthyol 33:85–97Google Scholar
  70. Kasumyan AO, Ponomarev VY (1990) The ontogeny of feeding behavior in relation to natural chemical signals in cyprinid fishes. J Ichthyology 30(5):89–100Google Scholar
  71. Kasumyan AO, Sidorov SS, Kazhlaev AA, Pashchenko NI (1995) Behavioral responses of young stellate sturgeon to smell and taste of artificial feeds and their components. In: Gershanovich AD, Smith TIJ (eds) Proceeding of international symposium on Acipenserids. VNIRO Publishing, Moscow, pp 278–288Google Scholar
  72. Kitamura S, Ogata H, Takashima F (1994) Olfactory responses of several species of teleost to F-prostaglandins. Comp Biochem Physiol 107A:463–467Google Scholar
  73. Kiyohara S, Yamashita S, Harada S (1981) High sensitivity of minnow gustatory receptors to amino acids. Physiol Behav 26(6):1103–1108PubMedCrossRefGoogle Scholar
  74. Klaprat DA, Evans RE, Hara TJ (1992) Environmental contaminants and chemoreception in fishes. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 321–341CrossRefGoogle Scholar
  75. Kleerekoper H (1969) Olfaction in fishes. Indiana University Press, BloomingtonGoogle Scholar
  76. Krieger J, Hett AK, Fuerst PA et al (2008) The molecular phylogeny of the order Acipenseriformes revisited. J Appl Ichthyol 24(Suppl. 1):36–45. doi: 10.1111/j.1439-0426.2008.01088.x CrossRefGoogle Scholar
  77. Lari E, Kasumyan A, Falahat F et al (2013) Palatability of food animals for stellate sturgeon Acipenser stellatus Pallas, 1771. J Appl Ichthyol 29:1222–1224. doi: 10.1111/jai.12324 CrossRefGoogle Scholar
  78. Mackie AM (1982) Identification of the gustatory feeding stimulants. In: Hara TJ (ed) Chemoreception in fishes. Elsevier Scientific Publishing Comp, Amsterdam, pp 275–291Google Scholar
  79. Maklakova ME, Kondratieva IA, Mikhailova ES et al (2011) Effect of antibiotics on immunophysiological status and their taste attractiveness for rainbow trout Parasalmo ( = Oncorhynchus) mykiss (Salmoniformes, Salmonidae). J Ichthyol 51(11):1133–1142. doi: 10.1134/S0032945211110063 CrossRefGoogle Scholar
  80. Mamedov CA, Gadzhiev RY, Akhundov MM (2009) Novie tehnologii osetrovodstva v Azerbaydzhane (new technologies of sturgeon cultivation in Azerbaijan). Elm, Baku. (in Russian)Google Scholar
  81. Marui T, Caprio J (1992) Teleost gustation. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 171–198CrossRefGoogle Scholar
  82. Mearns KJ, Ellingsen OF, Døving KB et al (1987) Feeding behaviour in adult rainbow trout and Atlantic salmon parr, elicited by chemical fractions and mixtures of compounds identified in shrimp extract. Aquaculture 64(1):47–63CrossRefGoogle Scholar
  83. Morrison EE, Plumb JA (1994) Olfactory organ of channel catfish as a site of experimental Edwardsiella ictaluri infection. J Aquat Anim Health 6:101–109CrossRefGoogle Scholar
  84. Nonnotte L, Nonnotte G, Truchot JP, Williot P (1991) Gill chemoreceptor ultrastructure in a Chondrostean fish : Acipenser baerii. In: Williot P (ed) Acipenser. Cemagref Publ, Anthony, France, p 169Google Scholar
  85. Obukhov DK (1999) Cytoarchitectonics and neuronal organization of the sturgeon telencephalon. J Appl Ichthyol 15(4–5):92–95CrossRefGoogle Scholar
  86. Palatnikov GM (1983) Rol’ obonyania v pishedobivatel’nom povedii osetra Acipenser güldenstädti (role of olfaction in foraging behavior in sturgeon Acipenser güldenstädti). In: Kreps EM (ed) Funkcional’naya evolucia central’noy nervnoy sistemi. Izdatel’stvo Nauka, Leningradskoe otdelenie, pp 37–41. (in Russian)Google Scholar
  87. Palatnikov GM (1989) Elektrofisiologicheskoe izuchenie oboniatel’nih proekciy v promezhutochnom I srednem mozgu osetra Acipenser güldenstädti (electrophysiological study of olfactory projections in medulla oblongata and midbrain of sturgeon Acipenser güldenstädti). Zhurnal Evolyutsionnoi Biokhimii i Fiziologii 25(3):354–359. (in Russian)Google Scholar
  88. Pashchenko NI, Kasumyan AO (2015) Scanning electron microscopy of olfactory organ development in grass carp Ctenopharyngodon idella ontogeny. J Ichthyol 55(6)Google Scholar
  89. Pavlov DS, Kasumyan AO (1998) The structure of the feeding behaviour of fishes. J Ichthyol 38:116–128Google Scholar
  90. Pavlov DS, Sbikin YN, Popova IK (1970) Rol’ organov chuvstv pri pitanii molodi osetrovih rib (the significance of sense organs in feeding behaviour of young sturgeons). Zoologicheskii Zhurnal 49:872–880. (in Russian)Google Scholar
  91. Pevzner RA (1981) Ul’trastrukturnaia organizacia vkusovih receptorov kostno-hriashevih rib. I. Vzroslie osetrovie ribi (the fine structure of taste buds of the ganoid fishes. I. Adult Acipenseridae). Tsitologia 23(7):760–765. (in Russian with English summary)Google Scholar
  92. Pevzner RA (1985) Ul’trastrukturnaia organizaciya vkusovih receptorov kostno-hriashevih rib. III. Lichinki v period zheltochnogo pitania (ultrastructure of taste receptors in Chondrichthyes. III. Sturgeon larvae in yolk-feeding period). Tsitologia 27(11):1240–1246. (in Russian with English summary)Google Scholar
  93. Poe WE, Wilson RP (1989) Palatability of diets containing sulfadimethoxine, ormetoprim, and Romet 30 to channel catfish fingerlings. Progress Fish Cult 51:226–228CrossRefGoogle Scholar
  94. Pyatkina GA (1975) Elektronnomikroskopicheskoe issledovanie organa oboniania sterlyadi (Acipenser ruthenus) (Electronnomicroscopic study of the olfactory organ in sterlet (Acipenser ruthenus)). Arhiv Anatomii, Gistologii i Embriologii 68(5):85–93. (in Russian)Google Scholar
  95. Pyatkina GA (1976) Receptornie kletki razlichnih tipov I kolichestvennoe sootnoshenie mezhdu nimi v organe oboniania lichinok I polovozrelih osobey osetrovih rib (receptor cells of various types and their proportional interrelation in the olfactory organ of larvae and adults of acipenserid fishes). Tsitologia 18:1444–1449. (in Russian)Google Scholar
  96. Pyka J, Kolman R (2003) Feeding intensity and growth of Siberian sturgeon Acipenser baeri Brandt in pond cultivation. Arch Pol Fish 11:287–294Google Scholar
  97. Reutter K (1986) Chemoreceptors. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, II. Springer, Berlin, pp 586–604CrossRefGoogle Scholar
  98. Reutter K (1992) Sturcture of the peripheral gustatory organ, represented by the siluroid fish Plotosus lineatus (Thunberg). In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 60–78CrossRefGoogle Scholar
  99. Reutter K, Breipohl W, Bijvank GJ (1974) Taste bud types in fishes. II. Scanning electron microscopical investigations on Xiphophorus helleri Heckel (Poeciliidae, Cyprinodontiformes, Teleostei). Cell Tissue Res 153:151–165PubMedCrossRefGoogle Scholar
  100. Reutter K, Hansen A (2005) Subtypes of light and dark elongated taste bud cells in fishes. In: Reutter K, Kapoor BG (eds) Fish chemosenses. Sci. Publ. Inc., Enfield, pp 211–230Google Scholar
  101. Robinson EH, Brent JR, Crabtree JT et al (1990) Improved palatability of channel catfish feeds containing Romet-30®. J Aquatic Animal Health 2:43–48CrossRefGoogle Scholar
  102. Rustamov EK (1987) Razvitie konechnogo mozga osetrovih rib v rannem ontogenese (development of telencephalon in early ontogeny in sturgeons). Zhurnal Evolyutsionnoi Biokhimii i Fiziologii 23(2):253–257. (in Russian)Google Scholar
  103. Schmalhausen OI (1962a) Morfologicheskoe issledovanie oboniatel’nih organov rib (morphological study of olfactory organs in fishes). Trudi Instituta morfologii i ekologii zhivotnih imeni AN Severtzova AN SSSR 40:157–187Google Scholar
  104. Schmalhausen ОI (1962b) Narushenie razvitiya oboniatel’nogo organa u osetrovih rib pri opredelennih usloviah (disruption of olfactory organ development in specific conditions). In: Proceedings of AN Severzev’s Institute of Animal Evolutionary Morphology and Ecology, Russian Acad Sci, vol 40, pp 188–218Google Scholar
  105. Shamushaki VAJ, Kasumyan AO, Abedian A et al (2007) Behavioral response of the Persian sturgeon (Acipenser persicus) juveniles to free amino acid solutions. Mar Freshwater Behav Physiol 40(3):219–224CrossRefGoogle Scholar
  106. Shamushaki VAJ, Abtahi B, Kasumyan AO et al (2008) Taste attractiveness of free amino acids for juveniles sturgeon Acipenser persicus. J Ichthyol 48:130–140. doi: 10.1134/S0032945208010116 Google Scholar
  107. Shamushaki VAJ, Abtahi B, Kasumyan AO (2011) Olfactory and taste attractiveness of free amino acids for Persian sturgeon juveniles, Acipenser persicus: a comparison with other acipenserids. J Appl Ichthyol 27:241–245. doi: 10.1111/j.1439-0426.2011.01687.x CrossRefGoogle Scholar
  108. Sorensen PW, Caprio J (1998) Chemoreception. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, pp 375–405Google Scholar
  109. Soriguer MC, Domezain A, Aragonés J et al (2002) Feeding preference in juveniles of Acipenser naccarii Bonaparte 1836. J Appl Ichthyol 18:691–694CrossRefGoogle Scholar
  110. Stabell OB (1984) Homing and olfaction in salmonids: a critical review with special reference to the Atlantic salmon. Biol Rev Camb Philos Soc 59:333–388CrossRefGoogle Scholar
  111. Stacey N, Sorensen P (2006) Reproductive pheromones. In: Sloman KA, Wilson RW, Balshine S (eds) Behaviour and physiology of fish. Academic Press, London, pp 359–412Google Scholar
  112. Stacey NE, Cardwell JR (1997) Hormonally derived pheromones in fish: new approaches to controlled reproduction. In: Fingerman M, Nagabhushanam R, Thompson MF (eds) Recent advances in marine biotechnology, vol V. 1. Science Pub, Enfield, pp 407–454Google Scholar
  113. Stroganov NS (1968) Akklimatizacia i virashivanie osetrovih rib v prudah (acclimatization and cultivation of sturgeon fishes in punds). Moscow University Press, Мoscow. (in Russian)Google Scholar
  114. Takeda M, Takii K, Matsui K (1984) Identification of feeding stimulants for juvenile eel. Bull Jap Soc Sci Fish 50(4):645–651CrossRefGoogle Scholar
  115. Tandler A, Berg BA, Kissil GW et al (1982) Effect of food attractants on appetite and growth rate of gilthead bream, Sparus aurata L. J Fish Biol 20:673–681CrossRefGoogle Scholar
  116. Toften H, Jorgensen EH, Jobling M (1995) The study of feeding preferences using radiography: oxytetracycline as a feeding deterren and squid extract as a stimulant in diets for Atlantic salmon. Aquac Nutr 1:145–149CrossRefGoogle Scholar
  117. Vasil’ev VP (1985) Evolucionnaia kariologia rib (evolutionary karyology of fish). Nauka, Moscow. (in Russian)Google Scholar
  118. Vasil’ev VP (2009) Mechanisms of polyploid evolution in fish: polyploidy in sturgeons. In: Carmona R, Domezain A, Garsia Gallego M et al (eds) Biology, conservation and sustainable development of sturgeons. Springer, NY, pp 97–117CrossRefGoogle Scholar
  119. Watson LR, Groff JM, Hedrick RP (1998) Replication and pathogenesis of white sturgeon iridovirus (WSIV) in experimentally infected white sturgeon Acipenser transmontanus juveniles and sturgeon cell lines. Dis Aquat Org 32:173–184PubMedCrossRefGoogle Scholar
  120. Williams R, Poulet SA (1986) Relationship between the zooplankton phytoplankton particulate matter and dissolved free amino acids in the Celtic Sea. Mar Biol 90:279–284CrossRefGoogle Scholar
  121. Yamamoto M (1982) Comparative morphology of the peripheral olfactory organ in teleosts. In: Hara TJ (ed) Chemoreeeption in fishes. Elsevier, Amsterdam, pp 39–59Google Scholar
  122. Zeiske E, Theisen B, Breucker H (1992) Structure, development, and evolutionary aspects of the peripheral olfactory system. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, New York, pp 13–39CrossRefGoogle Scholar
  123. Zeiske E, Kasumyan A, Bartsch P et al (2003) Early development of the olfactory organ in sturgeons of the genus Acipenser, a comparative and electron microscopic study. Morphol Embryol 206(5):357–372Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ichthyology, Faculty of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations