From Logic Programming and Non-monotonic Reasoning to Computational Argumentation and Beyond

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10377)

Abstract

Argumentation has gained popularity in AI in recent years to support several activities and forms of reasoning. This talk will trace back the logic programming and non-monotonic reasoning origins of two well-known argumentation formalisms in AI (namely abstract argumentation and assumption-based argumentation). Finally, the talk will discuss recent developments in AI making use of computational argumentation, in particular to support collaborative decision making.

References

  1. [BDKT97]
    Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93(1–2), 63–101 (1997)MathSciNetCrossRefMATHGoogle Scholar
  2. [BH14]
    Besnard, P., Hunter, A.: Constructing argument graphs with deductive arguments: a tutorial. Argument Comput. 5(1), 5–30 (2014)CrossRefGoogle Scholar
  3. [BS11]
    Bistarelli, S., Santini, F.: Conarg: a constraint-based computational framework for argumentation systems. In: IEEE 23rd International Conference on Tools with Artificial Intelligence, ICTAI, pp. 605–612. IEEE Computer Society (2011)Google Scholar
  4. [BTK93]
    Bondarenko, A., Toni, F., Kowalski, R.A.: An assumption-based framework for non-monotonic reasoning. In: Pereira, L.M., Nerode, A. (eds.) Proceedings of the 2nd International Workshop on Logic Programming and Non-monotonic Reasoning (LPNMR 1993), pp. 171–189, Lisbon, Portugal. MIT Press, June 1993Google Scholar
  5. [CST16]
    Cyras, K., Satoh, K., Toni, F.: Abstract argumentation for case-based reasoning. In: Baral, C., Delgrande, J.P., Wolter, F. (eds.) Proceedings of the Fifteenth International Conference on Principles of Knowledge Representation and Reasoning, KR 2016, Cape Town, South Africa, 25–29 April 2016, pp. 549–552. AAAI Press (2016)Google Scholar
  6. [DKT06]
    Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. Artif. Intell. 170, 114–159 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. [DKT09]
    Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in AI, pp. 25–44. Springer, Heidelberg (2009)Google Scholar
  8. [DMT07]
    Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell. 171(10–15), 642–674 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. [Dun95]
    Dung, P.M.: On the acceptability of arguments and its fundamental role in non-monotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (1995)CrossRefMATHGoogle Scholar
  10. [EGW10]
    Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation frameworks. Argument Comput. 1(2), 147–177 (2010)CrossRefMATHGoogle Scholar
  11. [FCS+13]
    Fan, X., Craven, R., Singer, R., Toni, F., Williams, M.: Assumption-based argumentation for decision-making with preferences: a medical case study. In: Leite, J., Son, T.C., Torroni, P., Torre, L., Woltran, S. (eds.) CLIMA 2013. LNCS, vol. 8143, pp. 374–390. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40624-9_23 CrossRefGoogle Scholar
  12. [FT14]
    Fan, X., Toni, F.: Decision making with assumption-based argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2013. LNCS, vol. 8306, pp. 127–142. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54373-9_9 CrossRefGoogle Scholar
  13. [FT15]
    Fan, X., Toni, F.: On computing explanations in argumentation. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 1496–1502. AAAI Press (2015)Google Scholar
  14. [GT14]
    Gao, Y., Toni, F.: Argumentation accelerated reinforcement learning for cooperative multi-agent systems. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) 21st European Conference on Artificial Intelligence, ECAI 2014, vol. 263 of Frontiers in Artificial Intelligence and Applications, pp. 333–338. IOS Press (2014)Google Scholar
  15. [GTWX16]
    Gao, Y., Toni, F., Wang, H., Xu, F.: Argumentation-based multi-agent decision making with privacy preserved. In: Jonker, C.M., Marsella, S., Thangarajah, J., Tuyls, K. (eds.) Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems (AAMAS 2016), pp. 1153–1161. ACM (2016)Google Scholar
  16. [ST16]
    Schulz, C., Toni, F.: Justifying answer sets using argumentation. Theory Pract. Logic Program. 16(1), 59–110 (2016)MathSciNetCrossRefGoogle Scholar
  17. [TDH09]
    Thang, P.M., Dung, P.M., Hung, N.D.: Towards a common framework for dialectical proof procedures in abstract argumentation. J. Logic Comput. 19(6), 1071–1109 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. [Ton13]
    Toni, F.: A generalised framework for dispute derivations in assumption-based argumentation. Artif. Intell. 195, 1–43 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. [Ton14]
    Toni, F.: A tutorial on assumption-based argumentation. Argument Comput. Spec. Issue Tutorials Struct. Argumentation 5(1), 89–117 (2014)Google Scholar
  20. [ZFTL14]
    Zhong, Q., Fan, X., Toni, F., Luo, X.: Explaining best decisions via argumentation. In: Proceedings of the European Conference on Social Intelligence (ECSI-2014), Barcelona, Spain, 3–5 November 2014, pp. 224–237 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations