The Functional Neuroanatomy of Face Processing: Insights from Neuroimaging and Implications for Deep Learning

  • Kalanit Grill-Spector
  • Kendrick Kay
  • Kevin S. Weiner
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)


Face perception is critical for normal social functioning, and is mediated by a cortical network of regions in the ventral visual stream. Comparative analysis between present deep neural network architectures for biometrics and neural architectures in the human brain is necessary for developing artificial systems with human abilities. Neuroimaging research has advanced our understanding regarding the functional architecture of the human ventral face network. Here, we describe recent neuroimaging findings in three domains: (1) the macro- and microscopic anatomical features of the ventral face network in the human brain, (2) the characteristics of white matter connections, and (3) the basic computations performed by population receptive fields within face-selective regions composing this network. Then, we consider how empirical findings can inform the development of accurate computational deep neural networks for face recognition as well as shed light on computational benefits of specific neural implementational features.



We thank Jesse Gomez for comments and edits of an earlier draft. This research has been funded by the following grants: NSF GRFP DGE-114747, 1RO1EY02231801-A1, and 1R01EY02391501-A1. Portions of this chapter were previously included within a paper published in the Annual Reviews of Vision Science, 2017 (


  1. 1.
    T. Allison, H. Ginter, G. McCarthy, A.C. Nobre, A. Puce et al., Face recognition in human extrastriate cortex. J. Neurophysiol. 71, 821–825 (1994)CrossRefGoogle Scholar
  2. 2.
    T. Allison, G. McCarthy, A. Nobre, A. Puce, A. Belger, Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cereb. Cortex 4, 544–554 (1994)CrossRefGoogle Scholar
  3. 3.
    T. Allison, A. Puce, D.D. Spencer, G. McCarthy, Electrophysiological studies of human face perception. I: potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb. Cortex 9, 415–430 (1999)CrossRefGoogle Scholar
  4. 4.
    T.J. Andrews, M.P. Ewbank, Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe. Neuroimage 23, 905–913 (2004)CrossRefGoogle Scholar
  5. 5.
    S. Anzellotti, S.L. Fairhall, A. Caramazza, Decoding representations of face identity that are tolerant to rotation. Cereb. Cortex 24, 1988–1995 (2014)CrossRefGoogle Scholar
  6. 6.
    G. Avidan, M. Behrmann, Functional MRI reveals compromised neural integrity of the face processing network in congenital prosopagnosia. Curr. Biol. 19, 1146–1150 (2009)CrossRefGoogle Scholar
  7. 7.
    G. Avidan, I. Levy, T. Hendler, E. Zohary, R. Malach, Spatial vs. object specific attention in high-order visual areas. Neuroimage 19, 308–318 (2003)CrossRefGoogle Scholar
  8. 8.
    G. Avidan, U. Hasson, R. Malach, M. Behrmann, Detailed exploration of face-related processing in congenital prosopagnosia: 2. Functional neuroimaging findings. J. Cogn. Neurosci. 17, 1150–1167 (2005)CrossRefGoogle Scholar
  9. 9.
    V. Axelrod, G. Yovel, Hierarchical processing of face viewpoint in human visual cortex. J. Neurosci. 32, 2442–2452 (2012)CrossRefGoogle Scholar
  10. 10.
    V. Axelrod, G. Yovel, The challenge of localizing the anterior temporal face area: a possible solution. Neuroimage 2013(81), 371–380 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Behrmann, G. Avidan, Congenital prosopagnosia: face-blind from birth. Trends Cogn. Sci. 9, 180–187 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Behrmann, D.C. Plaut, Distributed circuits, not circumscribed centers, mediate visual recognition. Trends Cogn. Sci. 17, 210–219 (2013)CrossRefGoogle Scholar
  13. 13.
    M.G. Berman, J. Park, R. Gonzalez, T.A. Polk, A. Gehrke et al., Evaluating functional localizers: the case of the FFA. Neuroimage 50, 56–71 (2010)CrossRefGoogle Scholar
  14. 14.
    V. Bruce, A. Young, Understanding face recognition. Br. J. Psychol. 77(Pt 3), 305–327 (1986)CrossRefGoogle Scholar
  15. 15.
    L. Bugatus, K.S. Weiner, K. Grill-Spector, Task differentially modulates the spatial extent of category-selective regions across anatomical locations. Neuroimage (2017) (in press)Google Scholar
  16. 16.
    C.F. Cadieu, H. Hong, D.L. Yamins, N. Pinto, D. Ardila et al., Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Comput. Biol. 10, e1003963 (2014)CrossRefGoogle Scholar
  17. 17.
    A.J. Calder, A.W. Young, Understanding the recognition of facial identity and facial expression. Nat. Rev. Neurosci. 6, 641–651 (2005)CrossRefGoogle Scholar
  18. 18.
    A.J. Calder, J.D. Beaver, J.S. Winston, R.J. Dolan, R. Jenkins et al., Separate coding of different gaze directions in the superior temporal sulcus and inferior parietal lobule. Curr. Biol. 17, 20–25 (2007)CrossRefGoogle Scholar
  19. 19.
    T. Carlson, H. Hogendoorn, H. Fonteijn, F.A. Verstraten, Spatial coding and invariance in object-selective cortex. Cortex 47, 14–22 (2011)CrossRefGoogle Scholar
  20. 20.
    J. Caspers, K. Zilles, S.B. Eickhoff, A. Schleicher, H. Mohlberg, K. Amunts, Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Struct. Funct. 218, 511–526 (2013)CrossRefGoogle Scholar
  21. 21.
    J.A. Collins, I.R. Olson, Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia 61, 65–79 (2014)CrossRefGoogle Scholar
  22. 22.
    A.C. Connolly, J.S. Guntupalli, J. Gors, M. Hanke, Y.O. Halchenko et al., The representation of biological classes in the human brain. J. Neurosci. 32, 2608–2618 (2012)CrossRefGoogle Scholar
  23. 23.
    T. Cukur, A.G. Huth, S. Nishimoto, J.L. Gallant, Functional subdomains within human FFA. J. Neurosci. 33, 16748–16766 (2013)CrossRefGoogle Scholar
  24. 24.
    N. Davidenko, D.A. Remus, K. Grill-Spector, Face-likeness and image variability drive responses in human face-selective ventral regions. Hum. Brain Mapp. 33, 2234–2249 (2012)CrossRefGoogle Scholar
  25. 25.
    I. Davidesco, M. Harel, M. Ramot, U. Kramer, S. Kipervasser et al., Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy. J. Neurosci. 33, 1228–1240 (2013)CrossRefGoogle Scholar
  26. 26.
    I. Davidesco, E. Zion-Golumbic, S. Bickel, M. Harel, D.M. Groppe et al., Exemplar selectivity reflects perceptual similarities in the human fusiform cortex. Cereb. Cortex 24, 1879–1893 (2014)CrossRefGoogle Scholar
  27. 27.
    B. de Haas, D.S. Schwarzkopf, I. Alvarez, R.P. Lawson, L. Henriksson et al., Perception and processing of faces in the human brain is tuned to typical feature locations. J. Neurosci. 36, 9289–9302 (2016)CrossRefGoogle Scholar
  28. 28.
    B. Duchaine, K. Nakayama, The Cambridge face memory test: results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants. Neuropsychologia 44, 576–585 (2006)CrossRefGoogle Scholar
  29. 29.
    B. Duchaine, G. Yovel, A revised neural framework for face processing. Annu. Rev. Vis. Sci 1, 393–416 (2015)CrossRefGoogle Scholar
  30. 30.
    B.C. Duchaine, K. Nakayama, Developmental prosopagnosia: a window to content-specific face processing. Curr. Opin. Neurobiol. 16, 166–173 (2006)CrossRefGoogle Scholar
  31. 31.
    S.O. Dumoulin, B.A. Wandell, Population receptive field estimates in human visual cortex. Neuroimage 39, 647–660 (2008)CrossRefGoogle Scholar
  32. 32.
    T. Egner, J.M. Monti, C. Summerfield, Expectation and surprise determine neural population responses in the ventral visual stream. J. Neurosci. 30, 16601–16608 (2010)CrossRefGoogle Scholar
  33. 33.
    M. Eickenberg, A. Gramfort, G. Varoquaux, B. Thirion, Seeing it all: convolutional network layers map the function of the human visual system. Neuroimage (2016)Google Scholar
  34. 34.
    M.P. Ewbank, T.J. Andrews, Differential sensitivity for viewpoint between familiar and unfamiliar faces in human visual cortex. Neuroimage 40, 1857–1870 (2008)CrossRefGoogle Scholar
  35. 35.
    F. Fang, S. He, Cortical responses to invisible objects in the human dorsal and ventral pathways. Nat. Neurosci. 8, 1380–1385 (2005)CrossRefGoogle Scholar
  36. 36.
    R. Farivar, O. Blanke, A. Chaudhuri, Dorsal-ventral integration in the recognition of motion-defined unfamiliar faces. J. Neurosci. 29, 5336–5342 (2009)CrossRefGoogle Scholar
  37. 37.
    D.J. Felleman, D.C. Van Essen, Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991)CrossRefGoogle Scholar
  38. 38.
    B. Fischl, M.I. Sereno, R.B. Tootell, A.M. Dale, High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284 (1999)CrossRefGoogle Scholar
  39. 39.
    W. Freiwald, B. Duchaine, G. Yovel, Face processing systems: from neurons to real-world social perception. Annu. Rev. Neurosci. 39, 325–346 (2016)CrossRefGoogle Scholar
  40. 40.
    M.A. Frost, R. Goebel, Measuring structural-functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment. Neuroimage 59, 1369–1381 (2012)CrossRefGoogle Scholar
  41. 41.
    K. Fukushima, Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw. 1, 119–130 (1982)CrossRefGoogle Scholar
  42. 42.
    I. Gauthier, P. Skudlarski, J.C. Gore, A.W. Anderson, Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3, 191–197 (2000)CrossRefGoogle Scholar
  43. 43.
    S. Gilaie-Dotan, R. Malach, Sub-exemplar shape tuning in human face-related areas. Cereb. Cortex 17, 325–338 (2007)CrossRefGoogle Scholar
  44. 44.
    S. Gilaie-Dotan, H. Gelbard-Sagiv, R. Malach, Perceptual shape sensitivity to upright and inverted faces is reflected in neuronal adaptation. Neuroimage 50, 383–395 (2010)CrossRefGoogle Scholar
  45. 45.
    J. Gomez, F. Pestilli, N. Witthoft, G. Golarai, A. Liberman et al., Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing. Neuron 85, 216–227 (2015)CrossRefGoogle Scholar
  46. 46.
    C. Gratton, K.K. Sreenivasan, M.A. Silver, M. D’Esposito, Attention selectively modifies the representation of individual faces in the human brain. J. Neurosci. 33, 6979–6989 (2013)CrossRefGoogle Scholar
  47. 47.
    K. Grill-Spector, R. Malach, fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. (Amst) 107, 293–321 (2001)CrossRefGoogle Scholar
  48. 48.
    K. Grill-Spector, K.S. Weiner, The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15, 536–548 (2014)CrossRefGoogle Scholar
  49. 49.
    K. Grill-Spector, T. Kushnir, S. Edelman, G. Avidan, Y. Itzchak, R. Malach, Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999)CrossRefGoogle Scholar
  50. 50.
    K. Grill-Spector, N. Knouf, N. Kanwisher, The fusiform face area subserves face perception, not generic within-category identification. Nat. Neurosci. 7, 555–562 (2004)CrossRefGoogle Scholar
  51. 51.
    K. Grill-Spector, R. Henson, A. Martin, Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10, 14–23 (2006)CrossRefGoogle Scholar
  52. 52.
    C.G. Gross, J. Sergent, Face recognition. Curr. Opin. Neurobiol. 2, 156–161 (1992)CrossRefGoogle Scholar
  53. 53.
    C.G. Gross, D.B. Bender, C.E. Rocha-Miranda, Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166, 1303–1306 (1969)CrossRefGoogle Scholar
  54. 54.
    M. Gschwind, G. Pourtois, S. Schwartz, D. Van De Ville, P. Vuilleumier, White-matter connectivity between face-responsive regions in the human brain. Cereb. Cortex 22, 1564–1576 (2012)CrossRefGoogle Scholar
  55. 55.
    U. Guclu, M.A. van Gerven, Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35, 10005–10014 (2015)CrossRefGoogle Scholar
  56. 56.
    R.J. Harris, G.E. Rice, A.W. Young, T.J. Andrews, Distinct but overlapping patterns of response to words and faces in the fusiform gyrus. Cereb. Cortex 26, 3161–3168 (2016)CrossRefGoogle Scholar
  57. 57.
    U. Hasson, I. Levy, M. Behrmann, T. Hendler, R. Malach, Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34, 479–490 (2002)CrossRefGoogle Scholar
  58. 58.
    J.V. Haxby, E.A. Hoffman, M.I. Gobbini, The distributed human neural system for face perception. Trends Cogn. Sci. 4, 223–233 (2000)CrossRefGoogle Scholar
  59. 59.
    J.V. Haxby, M.I. Gobbini, M.L. Furey, A. Ishai, J.L. Schouten, P. Pietrini, Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001)CrossRefGoogle Scholar
  60. 60.
    C.C. Hemond, N.G. Kanwisher, H.P. Op de Beeck, A preference for contralateral stimuli in human object- and face-selective cortex. PLoS One 2, e574 (2007)CrossRefGoogle Scholar
  61. 61.
    L. Henriksson, M. Mur, N. Kriegeskorte, Faciotopy-A face-feature map with face-like topology in the human occipital face area. Cortex 72, 156–167 (2015)CrossRefGoogle Scholar
  62. 62.
    G. Holmes, Disturbances of vision by cerebral lesions. Br. J. Ophthalmol. 2, 353–384 (1918)CrossRefGoogle Scholar
  63. 63.
    D.H. Hubel, T.N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)CrossRefGoogle Scholar
  64. 64.
    J.B. Hutchinson, M.R. Uncapher, K.S. Weiner, D.W. Bressler, M.A. Silver et al., Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cereb. Cortex 24, 49–66 (2012)CrossRefGoogle Scholar
  65. 65.
    A. Ishai, L.G. Ungerleider, A. Martin, J.V. Haxby, The representation of objects in the human occipital and temporal cortex. J. Cogn. Neurosci. 12(Suppl 2), 35–51 (2000)CrossRefGoogle Scholar
  66. 66.
    C. Jacques, N. Witthoft, K.S. Weiner, B.L. Foster, V. Rangarajan et al., Corresponding ECoG and fMRI category-selective signals in human ventral temporal cortex. Neuropsychologia 83, 14–28 (2016)CrossRefGoogle Scholar
  67. 67.
    X. Jiang, E. Rosen, T. Zeffiro, J. Vanmeter, V. Blanz, M. Riesenhuber, Evaluation of a shape-based model of human face discrimination using FMRI and behavioral techniques. Neuron 50, 159–172 (2006)CrossRefGoogle Scholar
  68. 68.
    J. Jonas, S. Frismand, J.P. Vignal, S. Colnat-Coulbois, L. Koessler et al., Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex. Hum. Brain Mapp. 35, 3360–3371 (2014)CrossRefGoogle Scholar
  69. 69.
    J. Jonas, B. Rossion, J. Krieg, L. Koessler, S. Colnat-Coulbois et al., Intracerebral electrical stimulation of a face-selective area in the right inferior occipital cortex impairs individual face discrimination. Neuroimage 99, 487–497 (2014)CrossRefGoogle Scholar
  70. 70.
    J. Jonas, C. Jacques, J. Liu-Shuang, H. Brissart, S. Colnat-Coulbois et al., A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proc. Natl. Acad. Sci. USA 113, E4088–E4097 (2016)CrossRefGoogle Scholar
  71. 71.
    N. Kanwisher, Domain specificity in face perception. Nat. Neurosci. 3, 759–763 (2000)CrossRefGoogle Scholar
  72. 72.
    N. Kanwisher, J. McDermott, M.M. Chun, The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997)CrossRefGoogle Scholar
  73. 73.
    N. Kanwisher, F. Tong, K. Nakayama, The effect of face inversion on the human fusiform face area. Cognition 68, B1–B11 (1998)CrossRefGoogle Scholar
  74. 74.
    K.N. Kay, J.D. Yeatman, Bottom-up and top-down computations in high-level visual cortex. Elife. 2017 Feb 22;6. pii: e22341 (2017)Google Scholar
  75. 75.
    K.N. Kay, T. Naselaris, R.J. Prenger, J.L. Gallant, Identifying natural images from human brain activity. Nature 452, 352–355 (2008)CrossRefGoogle Scholar
  76. 76.
    K.N. Kay, J. Winawer, A. Mezer, B.A. Wandell, Compressive spatial summation in human visual cortex. J. Neurophysiol. 110, 481–494 (2013)CrossRefGoogle Scholar
  77. 77.
    K.N. Kay, K.S. Weiner, K. Grill-Spector, Attention reduces spatial uncertainty in human ventral temporal cortex. Curr. Biol. 25, 595–600 (2015)CrossRefGoogle Scholar
  78. 78.
    S.M. Khaligh-Razavi, N. Kriegeskorte, Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput. Biol. 10, e1003915 (2014)CrossRefGoogle Scholar
  79. 79.
    T.C. Kietzmann, J.D. Swisher, P. Konig, F. Tong, Prevalence of selectivity for mirror-symmetric views of faces in the ventral and dorsal visual pathways. J. Neurosci. 32, 11763–11772 (2012)CrossRefGoogle Scholar
  80. 80.
    M. Kim, M. Ducros, T. Carlson, I. Ronen, S. He et al., Anatomical correlates of the functional organization in the human occipitotemporal cortex. Magn. Reson. Imaging 24, 583–590 (2006)CrossRefGoogle Scholar
  81. 81.
    B.P. Klein, B.M. Harvey, S.O. Dumoulin, Attraction of position preference by spatial attention throughout human visual cortex. Neuron 84, 227–237 (2014)CrossRefGoogle Scholar
  82. 82.
    J. Konorski, Integrative Activity of the Brain. An Interdisciplinary Approach (The University of Chicago Press, Chicago, 1967)Google Scholar
  83. 83.
    N. Kriegeskorte, Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 1, 417–446 (2015)CrossRefGoogle Scholar
  84. 84.
    N. Kriegeskorte, E. Formisano, B. Sorger, R. Goebel, Individual faces elicit distinct response patterns in human anterior temporal cortex. Proc. Natl. Acad. Sci. USA 104, 20600–20605 (2007)CrossRefGoogle Scholar
  85. 85.
    A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks. Presented at Neural Information Processing Systems (NIPS) (2012)Google Scholar
  86. 86.
    J. Kubilius, S. Bracci, H.P. Op de Beeck, Deep neural networks as a computational model for human shape sensitivity. PLoS Comput. Biol. 12, e1004896 (2016)CrossRefGoogle Scholar
  87. 87.
    Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard et al., Neural Information Processing (1989)Google Scholar
  88. 88.
    Y. Lee, B. Duchaine, H.R. Wilson, K. Nakayama, Three cases of developmental prosopagnosia from one family: detailed neuropsychological and psychophysical investigation of face processing. Cortex 46, 949–964 (2010)CrossRefGoogle Scholar
  89. 89.
    I. Levy, U. Hasson, G. Avidan, T. Hendler, R. Malach, Center-periphery organization of human object areas. Nat. Neurosci. 4, 533–539 (2001)CrossRefGoogle Scholar
  90. 90.
    G. Loffler, G. Yourganov, F. Wilkinson, H.R. Wilson, fMRI evidence for the neural representation of faces. Nat. Neurosci. 8, 1386–1390 (2005)CrossRefGoogle Scholar
  91. 91.
    G.R. Loftus, E.M. Harley, Why is it easier to identify someone close than far away? Psychon. Bull. Rev. 12, 43–65 (2005)CrossRefGoogle Scholar
  92. 92.
    S. Lorenz, K.S. Weiner, J. Caspers, H. Mohlberg, A. Schleicher et al., Two new cytoarchitectonic areas on the human mid-fusiform gyrus. Cereb. Cortex (2015)Google Scholar
  93. 93.
    A. Martin, C.L. Wiggs, L.G. Ungerleider, J.V. Haxby, Neural correlates of category-specific knowledge. Nature 379, 649–652 (1996)CrossRefGoogle Scholar
  94. 94.
    G. McCarthy, A. Puce, J.C. Gore, T. Allison, Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9, 605–610 (1997)CrossRefGoogle Scholar
  95. 95.
    G. McCarthy, A. Puce, A. Belger, T. Allison, Electrophysiological studies of human face perception. II: response properties of face-specific potentials generated in occipitotemporal cortex. Cereb. Cortex 9, 431–444 (1999)CrossRefGoogle Scholar
  96. 96.
    E. McKone, Holistic processing for faces operates over a wide range of sizes but is strongest at identification rather than conversational distances. Vis. Res. 49, 268–283 (2009)CrossRefGoogle Scholar
  97. 97.
    K. Moutoussis, S. Zeki, The relationship between cortical activation and perception investigated with invisible stimuli. Proc. Natl. Acad. Sci. USA 99, 9527–9532 (2002)CrossRefGoogle Scholar
  98. 98.
    M. Mur, D.A. Ruff, J. Bodurka, P. De Weerd, P.A. Bandettini, N. Kriegeskorte, Categorical, yet graded-single-image activation profiles of human category-selective cortical regions. J. Neurosci. 32, 8649–8662 (2012)CrossRefGoogle Scholar
  99. 99.
    S. Nasr, N. Liu, K.J. Devaney, X. Yue, R. Rajimehr et al., Scene-selective cortical regions in human and nonhuman primates. J. Neurosci. 31, 13771–13785 (2011)CrossRefGoogle Scholar
  100. 100.
    V. Natu, M.A. Barnett, T. Hartley, J. Gomez, A. Stigliani, K. Grill-Spector, Development of neural sensitivity to face identity correlates with perceptual discriminability. J. Neurosci. 36, 10893–10907 (2016)CrossRefGoogle Scholar
  101. 101.
    V.S. Natu, A.J. O’Toole, Spatiotemporal changes in neural response patterns to faces varying in visual familiarity. Neuroimage 108, 151–159 (2015)CrossRefGoogle Scholar
  102. 102.
    V.S. Natu, F. Jiang, A. Narvekar, S. Keshvari, V. Blanz, A.J. O’Toole, Dissociable neural patterns of facial identity across changes in viewpoint. J. Cogn. Neurosci. 22, 1570–1582 (2010)CrossRefGoogle Scholar
  103. 103.
    A. Nestor, D.C. Plaut, M. Behrmann, Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis. Proc. Natl. Acad. Sci. USA 108, 9998–10003 (2011)CrossRefGoogle Scholar
  104. 104.
    K.M. O’Craven, P.E. Downing, N. Kanwisher, fMRI evidence for objects as the units of attentional selection. Nature 401, 584–587 (1999)CrossRefGoogle Scholar
  105. 105.
    J. Parvizi, C. Jacques, B.L. Foster, N. Withoft, V. Rangarajan et al., Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32, 14915–14920 (2012)CrossRefGoogle Scholar
  106. 106.
    M.V. Peelen, P.E. Downing, Within-subject reproducibility of category-specific visual activation with functional MRI. Hum. Brain Mapp. 25, 402–408 (2005)CrossRefGoogle Scholar
  107. 107.
    K.A. Pelphrey, N.J. Sasson, J.S. Reznick, G. Paul, B.D. Goldman, J. Piven, Visual scanning of faces in autism. J Autism Dev. Disord. 32, 249–261 (2002)CrossRefGoogle Scholar
  108. 108.
    M.A. Pinsk, M. Arcaro, K.S. Weiner, J.F. Kalkus, S.J. Inati et al., Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. J. Neurophysiol. 101, 2581–2600 (2009)CrossRefGoogle Scholar
  109. 109.
    D. Pitcher, V. Walsh, G. Yovel, B. Duchaine, TMS evidence for the involvement of the right occipital face area in early face processing. Curr. Biol. 17, 1568–1573 (2007)CrossRefGoogle Scholar
  110. 110.
    D. Pitcher, D.D. Dilks, R.R. Saxe, C. Triantafyllou, N. Kanwisher, Differential selectivity for dynamic versus static information in face-selective cortical regions. Neuroimage 56, 2356–2363 (2011)CrossRefGoogle Scholar
  111. 111.
    D. Pitcher, V. Walsh, B. Duchaine, The role of the occipital face area in the cortical face perception network. Exp. Brain Res. 209, 481–493 (2011)CrossRefGoogle Scholar
  112. 112.
    D. Pitcher, T. Goldhaber, B. Duchaine, V. Walsh, N. Kanwisher, Two critical and functionally distinct stages of face and body perception. J. Neurosci. 32, 15877–15885 (2012)CrossRefGoogle Scholar
  113. 113.
    E. Privman, Y. Nir, U. Kramer, S. Kipervasser, F. Andelman et al., Enhanced category tuning revealed by intracranial electroencephalograms in high-order human visual areas. J. Neurosci. 27, 6234–6242 (2007)CrossRefGoogle Scholar
  114. 114.
    A. Puce, T. Allison, J.C. Gore, G. McCarthy, Face-sensitive regions in human extrastriate cortex studied by functional MRI. J. Neurophysiol. 74, 1192–1199 (1995)CrossRefGoogle Scholar
  115. 115.
    A. Puce, T. Allison, S. Bentin, J.C. Gore, G. McCarthy, Temporal cortex activation in humans viewing eye and mouth movements. J. Neurosci. 18, 2188–2199 (1998)CrossRefGoogle Scholar
  116. 116.
    A. Puce, T. Allison, G. McCarthy, Electrophysiological studies of human face perception. III: effects of top-down processing on face-specific potentials. Cereb. Cortex 9, 445–458 (1999)CrossRefGoogle Scholar
  117. 117.
    J.A. Pyles, T.D. Verstynen, W. Schneider, M.J. Tarr, Explicating the face perception network with white matter connectivity. PLoS One 8, e61611 (2013)CrossRefGoogle Scholar
  118. 118.
    R. Rajimehr, J.C. Young, R.B. Tootell, An anterior temporal face patch in human cortex, predicted by macaque maps. Proc. Natl. Acad. Sci. USA 106, 1995–2000 (2009)CrossRefGoogle Scholar
  119. 119.
    V. Rangarajan, D. Hermes, B.L. Foster, K.S. Weiner, C. Jacques et al., Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J. Neurosci. 34, 12828–12836 (2014)CrossRefGoogle Scholar
  120. 120.
    J.H. Reynolds, D.J. Heeger, The normalization model of attention. Neuron 61, 168–185 (2009)CrossRefGoogle Scholar
  121. 121.
    M. Riesenhuber, T. Poggio, Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999)CrossRefGoogle Scholar
  122. 122.
    M. Rosenke, K.S. Weiner, M.A. Barnett, K. Zilles, K. Amunts, R. Goebel, K. Grill-Spector, A cross-validated cytoarchitectonic atlas of the human ventral visual stream. NeuroImage pii: S1053–8119(17), 30151–30159 (2017)Google Scholar
  123. 123.
    B. Rossion, Constraining the cortical face network by neuroimaging studies of acquired prosopagnosia. Neuroimage 40, 423–426 (2008)CrossRefGoogle Scholar
  124. 124.
    B. Rossion, A. Boremanse, Robust sensitivity to facial identity in the right human occipito-temporal cortex as revealed by steady-state visual-evoked potentials. J. Vis. 11, 1–18 (2011)CrossRefGoogle Scholar
  125. 125.
    B. Rossion, R. Caldara, M. Seghier, A.M. Schuller, F. Lazeyras, E. Mayer, A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126, 2381–2395 (2003)CrossRefGoogle Scholar
  126. 126.
    P. Rotshtein, R.N. Henson, A. Treves, J. Driver, R.J. Dolan, Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nat. Neurosci. 8, 107–113 (2005)CrossRefGoogle Scholar
  127. 127.
    D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Cognitive Modeling (1988)Google Scholar
  128. 128.
    Z.M. Saygin, D.E. Osher, K. Koldewyn, G. Reynolds, J.D. Gabrieli, R.R. Saxe, Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat. Neurosci. 15, 321–327 (2012)CrossRefGoogle Scholar
  129. 129.
    C. Schiltz, B. Sorger, R. Caldara, F. Ahmed, E. Mayer et al., Impaired face discrimination in acquired prosopagnosia is associated with abnormal response to individual faces in the right middle fusiform gyrus. Cereb. Cortex 16, 574–586 (2006)CrossRefGoogle Scholar
  130. 130.
    C. Schiltz, L. Dricot, R. Goebel, B. Rossion, Holistic perception of individual faces in the right middle fusiform gyrus as evidenced by the composite face illusion. J. Vis. 10(25), 1–16 (2010)CrossRefGoogle Scholar
  131. 131.
    F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: a unified embedding for face recognition and clustering. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2015) (2015), pp. 815–823Google Scholar
  132. 132.
    R.F. Schwarzlose, J.D. Swisher, S. Dang, N. Kanwisher, The distribution of category and location information across object-selective regions in human visual cortex. Proc. Natl. Acad. Sci. USA 105, 4447–4452 (2008)CrossRefGoogle Scholar
  133. 133.
    M.I. Sereno, A.M. Dale, J.B. Reppas, K.K. Kwong, J.W. Belliveau et al., Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995)CrossRefGoogle Scholar
  134. 134.
    J. Sergent, J.L. Signoret, Functional and anatomical decomposition of face processing: evidence from prosopagnosia and PET study of normal subjects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 335, 55–61; discussion 61-2Google Scholar
  135. 135.
    J. Sergent, S. Ohta, B. MacDonald, Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 115(Pt 1), 15–36 (1992)CrossRefGoogle Scholar
  136. 136.
    T. Serre, A. Oliva, T. Poggio, A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. USA 104, 6424–6429 (2007)CrossRefGoogle Scholar
  137. 137.
    M.A. Silver, S. Kastner, Topographic maps in human frontal and parietal cortex. Trends Cogn. Sci. 13, 488–495 (2009)CrossRefGoogle Scholar
  138. 138.
    M.A. Silver, D. Ress, D.J. Heeger, Topographic maps of visual spatial attention in human parietal cortex. J. Neurophysiol. 94, 1358–1371 (2005)CrossRefGoogle Scholar
  139. 139.
    H.P. Snippe, J.J. Koenderink, Information in channel-coded systems: correlated receivers. Biol. Cybern. 67, 183–190 (1992)zbMATHCrossRefGoogle Scholar
  140. 140.
    B. Sorger, R. Goebel, C. Schiltz, B. Rossion, Understanding the functional neuroanatomy of acquired prosopagnosia. Neuroimage 35, 836–852 (2007)CrossRefGoogle Scholar
  141. 141.
    T.C. Sprague, J.T. Serences, Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices. Nat. Neurosci. 16, 1879–1887 (2013)CrossRefGoogle Scholar
  142. 142.
    J.K. Steeves, J.C. Culham, B.C. Duchaine, C.C. Pratesi, K.F. Valyear et al., The fusiform face area is not sufficient for face recognition: evidence from a patient with dense prosopagnosia and no occipital face area. Neuropsychologia 44, 594–609 (2006)CrossRefGoogle Scholar
  143. 143.
    C. Summerfield, E.H. Trittschuh, J.M. Monti, M.M. Mesulam, T. Egner, Neural repetition suppression reflects fulfilled perceptual expectations. Nat. Neurosci. (2008)Google Scholar
  144. 144.
    J.D. Swisher, M.A. Halko, L.B. Merabet, S.A. McMains, D.C. Somers, Visual topography of human intraparietal sulcus. J. Neurosci. 27, 5326–5337 (2007)CrossRefGoogle Scholar
  145. 145.
    Y. Taigman, M. Yang, M. Ranzato, L. Wolf, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2014), pp. 1701–1708Google Scholar
  146. 146.
    H. Takemura, A. Rokem, J. Winawer, J.D. Yeatman, B.A. Wandell, F. Pestilli, A major human white matter pathway between dorsal and ventral visual cortex. Cereb. Cortex 26, 2205–2214 (2016)CrossRefGoogle Scholar
  147. 147.
    T. Tallinen, J.Y. Chung, J.S. Biggins, L. Mahadevan, Gyrification from constrained cortical expansion. Proc. Natl. Acad. Sci. USA 111, 12667–12672 (2014)CrossRefGoogle Scholar
  148. 148.
    J.W. Tanaka, M.J. Farah, Parts and wholes in face recognition. Q. J. Exp. Psychol. A Hum. Exp. Psychol. 46, 225–245 (1993)CrossRefGoogle Scholar
  149. 149.
    I. Tavor, M. Yablonski, A. Mezer, S. Rom, Y. Assaf, G. Yovel, Separate parts of occipito-temporal white matter fibers are associated with recognition of faces and places. Neuroimage (2013)Google Scholar
  150. 150.
    F. Tong, K. Nakayama, J.T. Vaughan, N. Kanwisher, Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998)CrossRefGoogle Scholar
  151. 151.
    F. Tong, K. Nakayama, M. Moscovitch, O. Weinrib, N. Kanwisher, Response properties of the human fusiform face area. Cogn. Neuropsychol. 17, 257–280 (2000)CrossRefGoogle Scholar
  152. 152.
    D. Tsao, M. Livingstone, Mechanisms of face perception. Annu. Rev. Neurosci. 31, 411–437 (2008)CrossRefGoogle Scholar
  153. 153.
    D.Y. Tsao, S. Moeller, W.A. Freiwald, Comparing face patch systems in macaques and humans. Proc. Natl. Acad. Sci. USA 105, 19514–19519 (2008)CrossRefGoogle Scholar
  154. 154.
    T. Valentine, Face-space models of face recognition, in Computational, Geometric, and Process Perspectives on Facial Cognition: Contexts and Challenges, ed. by M.J. Wenger, J.T. Townsend (Lawrence Erlbaum Associates Inc, Hillsdale, 2001)Google Scholar
  155. 155.
    G. Van Belle, P. De Graef, K. Verfaillie, T. Busigny, B. Rossion, Whole not hole: expert face recognition requires holistic perception. Neuropsychologia 48, 2620–2629 (2010)CrossRefGoogle Scholar
  156. 156.
    G. Van Belle, T. Busigny, P. Lefevre, S. Joubert, O. Felician et al., Impairment of holistic face perception following right occipito-temporal damage in prosopagnosia: converging evidence from gaze-contingency. Neuropsychologia 49, 3145–3150 (2011)CrossRefGoogle Scholar
  157. 157.
    D.C. Van Essen, J.L. Gallant, Neural mechanisms of form and motion processing in the primate visual system. Neuron 13, 1–10 (1994)CrossRefGoogle Scholar
  158. 158.
    D.C. Van Essen, C.H. Anderson, D.J. Felleman, Information processing in the primate visual system: an integrated systems perspective. Science 255, 419–423 (1992)CrossRefGoogle Scholar
  159. 159.
    P. Vuilleumier, R.N. Henson, J. Driver, R.J. Dolan, Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nat. Neurosci. 5, 491–499 (2002)CrossRefGoogle Scholar
  160. 160.
    P. Vuilleumier, J.L. Armony, J. Driver, R.J. Dolan, Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci. 6, 624–631 (2003)CrossRefGoogle Scholar
  161. 161.
    B.A. Wandell, J. Winawer, Imaging retinotopic maps in the human brain. Vis. Res. 51, 718–737 (2011)CrossRefGoogle Scholar
  162. 162.
    B.A. Wandell, J. Winawer, Computational neuroimaging and population receptive fields. Trends Cogn. Sci. 19, 349–357 (2015)CrossRefGoogle Scholar
  163. 163.
    B.A. Wandell, S.O. Dumoulin, A.A. Brewer, Visual field maps in human cortex. Neuron 56, 366–383 (2007)CrossRefGoogle Scholar
  164. 164.
    K. Weibert, T.J. Andrews, Activity in the right fusiform face area predicts the behavioural advantage for the perception of familiar faces. Neuropsychologia 75, 588–596 (2015)CrossRefGoogle Scholar
  165. 165.
    K.S. Weiner, K. Grill-Spector, Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neuroimage 52, 1559–1573 (2010)CrossRefGoogle Scholar
  166. 166.
    K.S. Weiner, K. Grill-Spector, The improbable simplicity of the fusiform face area. Trends Cogn. Sci. 16(5), 251–4 (2012)CrossRefGoogle Scholar
  167. 167.
    K.S. Weiner, K. Grill-Spector, The evolution of face processing networks. Trends Cogn. Sci. 19, 240–241 (2015)CrossRefGoogle Scholar
  168. 168.
    K.S. Weiner, K. Zilles, The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia 83, 48–62 (2016)CrossRefGoogle Scholar
  169. 169.
    K.S. Weiner, R. Sayres, J. Vinberg, K. Grill-Spector, fMRI-adaptation and category selectivity in human ventral temporal cortex: regional differences across time scales. J. Neurophysiol. 103, 3349–3365 (2010)CrossRefGoogle Scholar
  170. 170.
    K.S. Weiner, G. Golarai, J. Caspers, M.R. Chuapoco, H. Mohlberg et al., The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. Neuroimage 84, 453–465 (2014)CrossRefGoogle Scholar
  171. 171.
    K.S. Weiner, J. Jonas, J. Gomez, L. Maillard, H. Brissart et al., The face-processing network is resilient to focal resection of human visual cortex. J. Neurosci. 36, 8425–8440 (2016)CrossRefGoogle Scholar
  172. 172.
    K.S. Weiner, J.D. Yeatman, B.A. Wandell, The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex. 31 Mar 2016. pii: (16)30050-8 (2016). doi: 10.1016/S0010-9452
  173. 173.
    K.S. Weiner, B.A. Barnett, S. Lorenz, J. Caspers, A. Stigliani et al., The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb. Cortex (2017)Google Scholar
  174. 174.
    Y. Weiss, S. Edelman, M. Fahle, Models of perceptual learning in vernier hyperacuity. Neural Comput. 5, 695–718 (1993)CrossRefGoogle Scholar
  175. 175.
    J.S. Winston, R.N. Henson, M.R. Fine-Goulden, R.J. Dolan, fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception. J. Neurophysiol. 92, 1830–1839 (2004)CrossRefGoogle Scholar
  176. 176.
    N. Witthoft, S. Poltoratski, M. Nguyen, G. Golarai, A. Liberman et al., Developmental prosopagnosia is associated with reduced spatial integration in the ventral visual cortex, in bioRxiv (2016)Google Scholar
  177. 177.
    D.L. Yamins, J.J. DiCarlo, Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016)CrossRefGoogle Scholar
  178. 178.
    D.L. Yamins, H. Hong, C.F. Cadieu, E.A. Solomon, D. Seibert, J.J. DiCarlo, Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. Acad. Sci. USA 111, 8619–8624 (2014)CrossRefGoogle Scholar
  179. 179.
    J.D. Yeatman, K.S. Weiner, F. Pestilli, A. Rokem, A. Mezer, B.A. Wandell, The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc. Natl. Acad. Sci. USA 111, E5214–E5223 (2014)CrossRefGoogle Scholar
  180. 180.
    D.J. Yi, T.A. Kelley, R. Marois, M.M. Chun, Attentional modulation of repetition attenuation is anatomically dissociable for scenes and faces. Brain Res. 1080, 53–62 (2006)CrossRefGoogle Scholar
  181. 181.
    G. Yovel, N. Kanwisher, Face perception: domain specific, not process specific. Neuron 44, 889–898 (2004)Google Scholar
  182. 182.
    G. Yovel, N. Kanwisher, The neural basis of the behavioral face-inversion effect. Curr. Biol. 15, 2256–2262 (2005)CrossRefGoogle Scholar
  183. 183.
    X. Yue, B.S. Cassidy, K.J. Devaney, D.J. Holt, R.B. Tootell, Lower-level stimulus features strongly influence responses in the fusiform face area. Cereb. Cortex 21, 35–47 (2011)CrossRefGoogle Scholar
  184. 184.
    S. Zeki, S. Shipp, The functional logic of cortical connections. Nature 335, 311–317 (1988)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kalanit Grill-Spector
    • 1
    • 2
  • Kendrick Kay
    • 3
  • Kevin S. Weiner
    • 1
  1. 1.Department of PsychologyStanford UniversityStanfordUSA
  2. 2.Stanford Neurosciences InstituteStanford UniversityStanfordUSA
  3. 3.Department of RadiologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations