From Structured to Abstract Argumentation: Assumption-Based Acceptance via AF Reasoning

  • Tuomo Lehtonen
  • Johannes P. Wallner
  • Matti Järvisalo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10369)


We study the applicability of abstract argumentation (AF) reasoners in efficiently answering acceptability queries over assumption-based argumentation (ABA) frameworks, one of the prevalent forms of structured argumentation. We provide a refined algorithm for translating ABA frameworks to AFs allowing the use of AF reasoning to answer ABA acceptability queries, covering credulous and skeptical acceptance problems over ABAs in a seamless way under several argumentation semantics. We empirically show that the approach is complementary with a state-of-the-art ABA reasoning system.


Minimal Support Deductive System Structure Argumentation Reasoning System Benchmark Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Besnard, P., García, A.J., Hunter, A., Modgil, S., Prakken, H., Simari, G.R., Toni, F.: Introduction to structured argumentation. Argum. Comput. 5(1), 1–4 (2014)CrossRefGoogle Scholar
  2. 2.
    Besnard, P., Hunter, A.: Elements of Argumentation. The MIT Press, Cambridge (2008)CrossRefGoogle Scholar
  3. 3.
    Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Caminada, M., Sá, S., Alcântara, J., Dvořák, W.: On the difference between assumption-based argumentation and abstract argumentation. In: Proceedings of BNAIC, pp. 25–32 (2013)Google Scholar
  5. 5.
    Cerutti, F., Dunne, P.E., Giacomin, M., Vallati, M.: Computing preferred extensions in abstract argumentation: a SAT-based approach. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2013. LNCS, vol. 8306, pp. 176–193. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54373-9_12 CrossRefGoogle Scholar
  6. 6.
    Cerutti, F., Giacomin, M., Vallati, M.: ArgSemSAT: solving argumentation problems using SAT. In: Proceedings of COMMA. FAIA, vol. 266, pp. 455–456. IOS Press (2014)Google Scholar
  7. 7.
    Craven, R., Toni, F.: Argument graphs and assumption-based argumentation. Artif. Intell. 233, 1–59 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Craven, R., Toni, F., Cadar, C., Hadad, A., Williams, M.: Efficient argumentation for medical decision-making. In: Proceedings of KR, pp. 598–602 (2012)Google Scholar
  9. 9.
    Craven, R., Toni, F., Williams, M.: Graph-based dispute derivations in assumption-based argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2013. LNCS (LNAI), vol. 8306, pp. 46–62. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54373-9_4 CrossRefGoogle Scholar
  10. 10.
    Dimopoulos, Y., Nebel, B., Toni, F.: On the computational complexity of assumption-based argumentation for default reasoning. Artif. Intell. 141(1/2), 57–78 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. Artif. Intell. 170(2), 114–159 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 25–44 (2009)Google Scholar
  14. 14.
    Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell. 171(10–15), 642–674 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 85–104 (2009)Google Scholar
  16. 16.
    Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete problems for counting complexity classes. Theor. Comput. Sci. 340(3), 496–513 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dvořák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive decision procedures for abstract argumentation. Artif. Intell. 206, 53–78 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation frameworks. Argum. Comput. 1(2), 147–177 (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Gaertner, D., Toni, F.: CaSAPI: a system for credulous and sceptical argumentation. In: Proceedings of NMR, pp. 80–95 (2007)Google Scholar
  20. 20.
    Gaertner, D., Toni, F.: Computing arguments and attacks in assumption-based argumentation. IEEE Intell. Syst. 22(6), 24–33 (2007)CrossRefGoogle Scholar
  21. 21.
    Gaertner, D., Toni, F.: Hybrid argumentation and its properties. In: Proceedings of COMMA. FAIA, vol. 172, pp. 183–195. IOS Press (2008)Google Scholar
  22. 22.
    García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach. TPLP 4(1–2), 95–138 (2004)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.: Potassco: the potsdam answer set solving collection. AI Comm. 24(2), 107–124 (2011)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Nofal, S., Atkinson, K., Dunne, P.E.: Algorithms for decision problems in argument systems under preferred semantics. Artif. Intell. 207, 23–51 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nofal, S., Atkinson, K., Dunne, P.E.: Looking-ahead in backtracking algorithms for abstract argumentation. Int. J. Approx. Reasoning 78, 265–282 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Prakken, H.: An abstract framework for argumentation with structured arguments. Argum. Comput. 1(2), 93–124 (2010)CrossRefGoogle Scholar
  27. 27.
    Thimm, M., Villata, S., Cerutti, F., Oren, N., Strass, H., Vallati, M.: Summary report of the first international competition on computational models of argumentation. AI Mag. 37(1), 102 (2016)Google Scholar
  28. 28.
    Toni, F.: A generalised framework for dispute derivations in assumption-based argumentation. Artif. Intell. 195, 1–43 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Toni, F.: A tutorial on assumption-based argumentation. Argum. Comput. 5(1), 89–117 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tuomo Lehtonen
    • 1
  • Johannes P. Wallner
    • 2
  • Matti Järvisalo
    • 1
  1. 1.HIIT, Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland
  2. 2.Institute of Information SystemsTU WienViennaAustria

Personalised recommendations