A Two-Tiered Propositional Framework for Handling Multisource Inconsistent Information

  • Davide CiucciEmail author
  • Didier Dubois
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10369)


This paper proposes a conceptually simple but expressive framework for handling propositional information stemming from several sources, namely a two-tiered propositional logic augmented with classical modal axioms (BC-logic), a fragment of the non-normal modal logic EMN, whose semantics is expressed in terms of two-valued monotonic set-functions called Boolean capacities. We present a theorem-preserving translation of Belnap logic in this setting. As special cases, we can recover previous translations of three-valued logics such as Kleene and Priest logics. Our translation bridges the gap between Belnap logic, epistemic logic, and theories of uncertainty like possibility theory or belief functions, and paves the way to a unified approach to various inconsistency handling methods.


  1. 1.
    Assaghir, Z., Napoli, A., Kaytoue, M., Dubois, D., Prade, H.: Numerical information fusion: lattice of answers with supporting arguments. In: Proceedings ICTAI 2011, Boca Raton, FL, USA, pp. 621–628 (2011)Google Scholar
  2. 2.
    Avron, A., Ben-Naim, J., Konikowska, B.: Processing Information from a set of sources. In: Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards Mathematical Philosophy. Trends in Logic, vol. 28, pp. 165–186. Springer, Netherlands (2009)CrossRefGoogle Scholar
  3. 3.
    Banerjee, M., Dubois, D.: A simple logic for reasoning about incomplete knowledge. Int. J. Approximate Reasoning 55, 639–653 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of Multiple-Valued Logic, pp. 8–37. D. Reidel, Dordrecht (1977)Google Scholar
  5. 5.
    Besnard, P., Hunter, A. (eds.): Reasoning with Actual and Potential Contradictions. The Handbook of Defeasible Reasoning and Uncertain Information, vol. 2. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
  6. 6.
    Carnielli, W., Lima-Marques, M.: Society semantics for multiple-valued logics. In: Advances in Contemporary Logic and Computer Science. Contemporary Mathematics, vol. 235, pp. 33–52. American Mathematical Society (1999)Google Scholar
  7. 7.
    Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ciucci, D., Dubois, D.: A modal theorem-preserving translation of a class of three-valued logics of incomplete information. J. Appl. Non Classical Logics 23(4), 321–352 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ciucci, D., Dubois, D.: From possibility theory to paraconsistency. In: Beziau, J.Y., Chakraborty, M., Dutta, S. (eds.) New Directions in Paraconsistent Logic. Springer Proceedings in Mathematics & Statistics, vol. 152. Springer, New Delhi (2015)CrossRefGoogle Scholar
  10. 10.
    Dubois, D.: Reasoning about ignorance and contradiction: many-valued logics versus epistemic logic. Soft Comput. 16(11), 1817–1831 (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dubois, D., Prade, H.: Possibility theory and its applications: where do we stand? In: Kacprzyk, J., Pedrycz, W. (eds.) Handbook of Computational Intelligence, pp. 31–60. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  12. 12.
    Dubois, D., Prade, H., Rico, A.: Representing qualitative capacities as families of possibility measures. Int. J. Approximate Reasoning 58, 3–24 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dunn, J.M.: Intuitive semantics for first-degree entailment and coupled trees. Philos. Stud. 29, 149–168 (1976)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Font, J.M.: Belnap’s four-valued logic and De Morgan lattices. Logic J. IGPL 5(3), 1–29 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kyburg, H.E., Teng, C.-M.: The logic of risky knowledge, reprised. Int. J. Approximate Reasoning 53(3), 274–285 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Priest, G.: The logic of paradox. J. Philos. Logic 8, 219–241 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pynko, A.P.: Characterizing Belnap’s logic via De Morgan’s laws. Math. Log. Q. 41, 442–454 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tanaka, K., Berto, F., Mares, E., Paoli, F. (eds.): Paraconsistency: Logic and Applications, pp. 1–12. Springer, Heidelberg (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.DISCo - Università di Milano - BicoccaMilanItaly
  2. 2.IRIT - CNRS & Université de ToulouseToulouseFrance

Personalised recommendations