A Clustering Approach for Collaborative Filtering Under the Belief Function Framework

  • Raoua AbdelkhalekEmail author
  • Imen Boukhris
  • Zied Elouedi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10369)


Collaborative Filtering (CF) is one of the most successful approaches in Recommender Systems (RS). It exploits the ratings of similar users or similar items in order to predict the users’ preferences. To do so, clustering CF approaches have been proposed to group items or users into different clusters. However, most of the existing approaches do not consider the impact of uncertainty involved during the clusters assignments. To tackle this issue, we propose in this paper a clustering approach for CF under the belief function theory. In our approach, we involve the Evidential C-Means to group the most similar items into different clusters and the predictions are then performed. Our approach tends to take into account the different memberships of the items clusters while maintaining a good scalability and recommendation performance. A comparative evaluation on a real world data set shows that the proposed method outperforms the previous evidential collaborative filtering.


Collaborative filtering Belief function theory Clustering Evidential C-Means 


  1. 1.
    Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)CrossRefGoogle Scholar
  2. 2.
    Park, Y., Park, S., Jung, W., Lee, S.G.: Reversed CF: A fast collaborative filtering algorithm using a k-nearest neighbor graph. Expert Syst. Appl. 42(8), 4022–4028 (2015)CrossRefGoogle Scholar
  3. 3.
    Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 1–19 (2009)CrossRefGoogle Scholar
  4. 4.
    Zhao, Z.D., Shang, M.S.: User-based collaborative-filtering recommendation algorithms on hadoop. In: Third International Conference on Knowledge Discovery and Data Mining, pp. 478–481. IEEE, Phuket (2010)Google Scholar
  5. 5.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: International Conference on World Wide Web, pp. 285–295. ACM, Hong Kong (2001)Google Scholar
  6. 6.
    Sarwar, B.M., Karypis, G., Konstan, J., Riedl, J.: Recommender systems for large-scale e-commerce: scalable neighborhood formation using clustering. In: International Conference on Computer and Information Technology. IEEE, Dhaka (2002)Google Scholar
  7. 7.
    Su, X., Khoshgoftaar, T.M.: Collaborative filtering for multi-class data using bayesian networks. Int. J. Artif. Intell. Tools 17(01), 71–85 (2008)CrossRefGoogle Scholar
  8. 8.
    Symeonidis, P.: Matrix and tensor decomposition in recommender systems. In: ACM Conference on Recommender Systems, pp. 429–430. ACM, Boston (2016)Google Scholar
  9. 9.
    Guo, G., Zhang, J., Yorke-Smith, N.: Leveraging multiviews of trust and similarity to enhance clustering-based recommender systems. Knowl.-Based Syst. 74, 14–27 (2015)CrossRefGoogle Scholar
  10. 10.
    Zhang, J., Lin, Y., Lin, M., Liu, J.: An effective collaborative filtering algorithm based on user preference clustering. Appl. Intell. 45(2), 230–240 (2016)CrossRefGoogle Scholar
  11. 11.
    Abdelkhalek, R., Boukhris, I., Elouedi, Z.: Evidential item-based collaborative filtering. In: Lehner, F., Fteimi, N. (eds.) KSEM 2016. LNCS, vol. 9983, pp. 628–639. Springer, Cham (2016). doi: 10.1007/978-3-319-47650-6_49 CrossRefGoogle Scholar
  12. 12.
    Dempster, A.P.: A generalization of bayesian inference. J. Roy. Stat. Soc. Series B (Methodological) 30, 205–247 (1968)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Shafer, G.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  14. 14.
    Smets, P.: The transferable belief model for quantified belief representation. In: Smets, P. (ed.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 1, pp. 267–301. Springer, Dordrecht (1998)Google Scholar
  15. 15.
    Hariz, S., Elouedi, Z., Mellouli, K.: Clustering approach using belief function theory. In: Euzenat, J., Domingue, J. (eds.) AIMSA 2006. LNCS, vol. 4183, pp. 162–171. Springer, Heidelberg (2006). doi: 10.1007/11861461_18 CrossRefGoogle Scholar
  16. 16.
    Masson, M.H., Denoeux, T.: ECM: An evidential version of the fuzzy c-means algorithm. Pattern Recogn. 41(4), 1384–1397 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Xue, G.R., Lin, C., Yang, Q., Xi, W., Zeng, H.J., Yu, Y., Chen, Z.: Scalable collaborative filtering using cluster-based smoothing. In: International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 114–121. ACM, Salvador (2005)Google Scholar
  18. 18.
    Nguyen, V.-D., Huynh, V.-N.: A community-based collaborative filtering system dealing with sparsity problem and data imperfections. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS, vol. 8862, pp. 884–890. Springer, Cham (2014). doi: 10.1007/978-3-319-13560-1_74 Google Scholar
  19. 19.
    Nguyen, V.-D., Huynh, V.-N.: A reliably weighted collaborative filtering system. In: Destercke, S., Denoeux, T. (eds.) ECSQARU 2015. LNCS, vol. 9161, pp. 429–439. Springer, Cham (2015). doi: 10.1007/978-3-319-20807-7_39 CrossRefGoogle Scholar
  20. 20.
    Nguyen, V.-D., Huynh, V.-N.: Integrating with social network to enhance recommender system based-on dempster-shafer theory. In: Nguyen, H.T.T., Snasel, V. (eds.) CSoNet 2016. LNCS, vol. 9795, pp. 170–181. Springer, Cham (2016). doi: 10.1007/978-3-319-42345-6_15 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Raoua Abdelkhalek
    • 1
    Email author
  • Imen Boukhris
    • 1
  • Zied Elouedi
    • 1
  1. 1.LARODEC, Institut Supérieur de Gestion de TunisUniversité de TunisTunisTunisia

Personalised recommendations