Understanding Homophily and More-Becomes-More Through Adaptive Temporal-Causal Network Models

  • Sven van den Beukel
  • Simon H. Goos
  • Jan TreurEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 619)


This study describes the use of adaptive temporal-causal networks to model and simulate the development of mutually interacting opinion states and connections between individuals in social networks. The focus is on adaptive networks combining the homophily principle with the more becomes more principle. The model has been used to analyse a data set concerning opinions about the use of alcohol and tobacco, and friendship relations. The achieved results provide insights in the potential of the approach.


Homophily More becomes more Temporal-causal networks Alcohol Tobacco 


  1. 1.
    Carrington, P.J., Scott, J., Wasserman, S. (eds.): Models and Methods in Social Network Analysis. Cambridge University Press, Cambridge (2003)Google Scholar
  2. 2.
    Wasserman, S., Galaskiewicz, J.: Advances in Social Network Analysis: Research in the Social and Behavioral Sciences. Sage, London (1994)CrossRefGoogle Scholar
  3. 3.
    Pugacheva, E.: Social network modelling. Interdiscip. Stud. Complex Syst. 6, 49–62 (2015)Google Scholar
  4. 4.
    McGloin, J.M., Sullivan, C.J., Thomas, K.J.: Peer influence and context: the interdependence of friendship groups, schoolmates and network density in predicting substance use. J. Youth Adolesc. 43(9), 1436–1452 (2014)CrossRefGoogle Scholar
  5. 5.
    Urberg, K.A., Değirmencioğlu, S.M., Pilgrim, C.: Close friend and group influence on adolescent cigarette smoking and alcohol use. Dev. Psychol. 33, 834–844 (1997)CrossRefGoogle Scholar
  6. 6.
    Ennett, S.T., Bauman, K.E., Hussong, A., Faris, R., Foshee, V.A., Cai, L., DuRant, R.H.: The peer context of adolescent substance use: findings from social network analysis. J. Res. Adolesc. 16(2), 159–186 (2006)CrossRefGoogle Scholar
  7. 7.
    Mundt, M.P.: The impact of peer social networks on adolescent alcohol use initiation. Acad. Pediatr. 11(5), 414–421 (2011)CrossRefGoogle Scholar
  8. 8.
    Osgood, D.W., Ragan, D.T., Wallace, L., Gest, S.D., Feinberg, M.E., Moody, J.: Peers and the emergence of alcohol use: influence and selection processes in adolescent friendship networks. J. Res. Adolesc. 23(3), 500–512 (2013)CrossRefGoogle Scholar
  9. 9.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily. Annu. Rev. Sociol. 27, 415–444 (2001)CrossRefGoogle Scholar
  10. 10.
    Treur, J.: Network-Oriented Modeling: Addressing Complexity of Cognitive, Affective and Social Interactions. Springer, Berlin (2016)CrossRefzbMATHGoogle Scholar
  11. 11.
    Blankendaal, R., Parinussa, S., Treur, J.: A temporal-causal modelling approach to integrated contagion and network change in social networks. In: Proceedings of the 22nd European Conference on Artificial Intelligence, ECAI 2016. IOS Press (2016)Google Scholar
  12. 12.
  13. 13.
    Nunes, D., Antunes, L.: Modelling structured societies: a multi-relational approach to context permeability. Artif. Intell. 229, 175–199 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sven van den Beukel
    • 1
  • Simon H. Goos
    • 1
  • Jan Treur
    • 1
    Email author
  1. 1.Behavioural Informatics GroupVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations