Antagonistic Interactions and Killer Yeasts

  • Roland KlassenEmail author
  • Raffael Schaffrath
  • Pietro Buzzini
  • Philip F. GanterEmail author


Antagonistic interactions occur between yeasts and other competing microorganisms. These interactions may rely on non-proteinaceous compounds or proteins called killer toxins. A large variety of structurally and functionally diverse toxins released from killer yeasts are known. In addition to chromosomally encoded toxins, several well-characterized toxins are encoded by selfish extrachromosomal DNA or RNA molecules of viral origin. Despite their structural diversity, only a handful of toxic strategies are utilized by structurally distinct killer toxins, and multistep modes of cell killing involve common steps, such as the binding of different cell wall receptors. In addition, distinct toxin types are known to rely on common mechanisms for maturation, structural stabilization, and release from producer cells. In case of the extrachromosomally encoded toxins, specific immunity mechanisms are linked to toxin production. In these cases, toxins are assumed to provide a positive selection mechanism for the genetic system encoding both toxin and immunity. Hence, release of killer toxins might benefit both the toxin producer and the selfish genetic element in the producer cell.

Killer yeasts display broad taxonomic diversity, including basidiomycetes and ascomycetes. Target species may not only include yeasts of both fungal phyla but also other microorganisms such as bacteria or protozoa that may compete in certain natural habitats with the killer yeast. Although killer systems are assumed to be competitive mechanisms, their role in natural yeast communities is not yet well understood. Theoretical approaches have, in general, failed to predict the coexistence of killer, non-killer, and target strains that occurs with regularity in nature. The few empirical studies of natural killer systems have confirmed the ecological importance of killer toxins but have uncovered differences in the exact role the toxins play in yeast ecology.


Killer yeast diversity Ecology Toxin mode of action Toxin immunity 


  1. Abranches J, Morais PB, Rosa CA, Mendonça-Hagler LC, Hagler A (1997) The incidence of killer activity and extracellular proteases in tropical yeast communities. Can J Microbiol 43:320–336CrossRefGoogle Scholar
  2. Abranches J, Valente P, Nóbrega HN, Fernandez FAS, Mendonca-Hagler LC, Hagler AN (1998) Yeast diversity and killer activity dispersed in fecal pellets from marsupials and rodents in a Brazilian tropical habitat mosaic. FEMS Microbiol Ecol 26:27–33CrossRefGoogle Scholar
  3. Abranches J, Vital MJS, Starmer WT, Mendonca-Hagler LC, Hagler AN (2000) The yeast community and mycocin producers of guava fruit in Rio de Janeiro, Brazil. Mycologia 92:16–22CrossRefGoogle Scholar
  4. Aguiar C, Lucas C (2000) Yeast killer/sensitive phenotypes and halotolerance. Food Technol Biotechnol 38:39–46Google Scholar
  5. Alonso A, Belda I, Santos A, Navascues E, Marquina D (2015) Advances in the control of the spoilage caused by Zygosaccharomyces species on sweet wines and concentrated grape musts. Food Control 51:129–134CrossRefGoogle Scholar
  6. Antuch W, Güntert P, Wüthrich K (1996) Ancestral beta gamma-crystallin precursor structure in a yeast killer toxin. Nat Struct Biol 3:662–665PubMedCrossRefGoogle Scholar
  7. Arroyo-Helguera O, De Las PA, Castaño I (2012) Occurrence of killer Candida glabrata clinical isolates. Braz J Microbiol 43:880–887PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ashida S, Shimazaki T, Kitano K, Hara S (1983) New killer toxin of Hansenula mrakii. Agric Biol Chem 47:2953–2955Google Scholar
  9. Bajaj BK, Dilbaghil N, Sharma S (2003) Incidence of killer yeast in cane molasses and status of industrial yeasts with respect to killer character. J Sci Ind Res 62:714–717Google Scholar
  10. Bajaj BK, Raina S, Singh S (2013) Killer toxin from a novel killer yeast Pichia kudriavzevii RY55 with idiosyncratic antibacterial activity. J Basic Microbiol 53:645–656PubMedCrossRefGoogle Scholar
  11. Becker B, Blum A, Gießelmann E, Dausend J, Rammo D, Müller NC, Tschacksch E, Steimer M, Spindler J, Becherer U, Rettig J, Breinig F, Schmitt MJ (2016) H/KDEL receptors mediate host cell intoxication by a viral A/B toxin in yeast. Sci Rep 6:31105PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bevan EA, Makower M (1963) The physiological basis of the killer character in yeast. In: Geerts SJ (ed) Genetics today. Proceedings of the XI international congress of genetics, The Hague. Pergamon Press, Oxford, pp 202–203Google Scholar
  13. Bolen PL, Eastman EM, Cihak PL, Hayman GT (1994) Isolation and sequence analysis of a gene from the linear DNA plasmid pPac1–2 of Pichia acaciae that shows similarity to a killer toxin gene of Kluyveromyces lactis. Yeast 10:403–414PubMedCrossRefGoogle Scholar
  14. Bonilla-Salinas M, Lappe P, Ulloa M, Garcia-Garibay M, Gomez-Ruiz L (1995) Isolation and identification of killer yeasts from sugar cane molasses. Lett Appl Microbiol 21:115–116CrossRefGoogle Scholar
  15. Bostian KA, Sturgeon JA, Tipper DJ (1980) Encapsidation of yeast killer double-stranded ribonucleic acids: dependence of M on L. J Bacteriol 143:463–470PubMedPubMedCentralGoogle Scholar
  16. Bostian KA, Elliott Q, Bussey H, Burn V, Smith A, Tipper DJ (1984) Sequence of the preprotoxin dsRNA gene of type I killer yeast: multiple processing events produce a two-component toxin. Cell 36:741–751PubMedCrossRefGoogle Scholar
  17. Breinig F, Tipper DJ, Schmitt MJ (2002) Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell 108:395–405PubMedCrossRefGoogle Scholar
  18. Breinig F, Schleinkofer K, Schmitt MJ (2004) Yeast Kre1p is GPI-anchored and involved in both cell wall assembly and architecture. Microbiology 150:3209–3218PubMedCrossRefGoogle Scholar
  19. Breinig F, Sendzik T, Eisfeld K, Schmitt MJ (2006) Dissecting toxin immunity in virus-infected killer yeast uncovers an intrinsic strategy of self-protection. Proc Natl Acad Sci USA 103:3810–3815PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brown SP, Le Chat L, De Paepe M, Taddei F (2006) Ecology of microbial invasions: amplification allows virus carriers to invade more rapidly when rare. Curr Biol 16:2048–2052PubMedCrossRefGoogle Scholar
  21. Bucci V, Nadell CD, Xavier JB (2011) The evolution of bacteriocin production in bacterial biofilms. Am Nat 178:E162–E173PubMedCrossRefGoogle Scholar
  22. Bussey H (1991) K1 killer toxin, a pore-forming protein from yeast. Mol Microbiol 5:2339–2343PubMedCrossRefGoogle Scholar
  23. Butler AR, O’Donnell RW, Martin VJ, Gooday GW, Stark MJ (1991a) Kluyveromyces lactis toxin has an essential chitinase activity. Eur J Biochem 199:483–488PubMedCrossRefGoogle Scholar
  24. Butler AR, Porter M, Stark MJR (1991b) Intracellular expression of Kluyveromyces lactis toxin γ-subunit mimics treatment with exogenous toxin and distinguishes two classes of toxin-resistant mutant. Yeast 7:617–625PubMedCrossRefGoogle Scholar
  25. Butler AR, White JH, Stark MJR (1991c) Analysis of the response of Saccharomyces cerevisiae cells to Kluyveromyces lactis toxin. J Gen Microbiol 137:1749–1757PubMedCrossRefGoogle Scholar
  26. Butler AR, White JH, Folawiyo Y, Edlin A, Gardiner D, Stark MJ (1994) Two Saccharomyces cerevisiae genes which control sensitivity to G1 arrest induced by Kluyveromyces lactis toxin. Mol Cell Biol 14:6306–6316PubMedPubMedCentralCrossRefGoogle Scholar
  27. Buzdar MA, Chi Z, Wang Q, Hua MX, Chi ZM (2011) Production, purification, and characterization of a novel killer toxin from Kluyveromyces siamensis against a pathogenic yeast in crab. Appl Microbiol Biotechnol 91:1571–1579PubMedCrossRefGoogle Scholar
  28. Buzzini P, Martini A (2000) Biodiversity of killer activity in yeasts isolated from the Brazilian rain forest. Can J Microbiol 46:607–611PubMedCrossRefGoogle Scholar
  29. Buzzini P, Berardinelli S, Turchetti B, Cardinali G, Martini A (2003) Fingerprinting at the strain level by differential sensitivity responses to a panel of selected killer toxins. Syst Appl Microbiol 26:466–470PubMedCrossRefGoogle Scholar
  30. Buzzini P, Corazzi L, Turchetti B, Buratta M, Martini A (2004) Characterization of the in vitro antimycotic activity of a novel killer protein from Williopsis saturnus DBVPG 4561 against emerging pathogenic yeasts. FEMS Microbiol Lett 238:359–365PubMedGoogle Scholar
  31. Carmona-Gutierrez D, Eisenberg T, Büttner S, Meisinger C, Kroemer G, Madeo F (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17:763–773PubMedCrossRefGoogle Scholar
  32. Carreiro SC, Pagnocca FC, Bacci M, Bueno OC, Hebling MJA, Middelhoven WJ (2002) Occurrence of killer yeasts in leaf-cutting ant nests. Folia Microbiol 47:259–262CrossRefGoogle Scholar
  33. Castón JR, Trus BL, Booy FP, Wickner RB, Wall JS, Steven AC (1997) Structure of L-A virus: a specialized compartment for the transcription and replication of double-stranded RNA. J Cell Biol 138:975–985PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chakravarty AK, Smith P, Jalan R, Shuman S (2014) Structure, mechanism, and specificity of a eukaryal tRNA restriction enzyme involved in self-nonself discrimination. Cell Rep 7:339–347PubMedPubMedCentralCrossRefGoogle Scholar
  35. Chang SL, Leu JY, Chang TH (2015) A population study of killer viruses reveals different evolutionary histories of two closely related Saccharomyces sensu stricto yeasts. Mol Ecol 24:4312–4322PubMedCrossRefGoogle Scholar
  36. Chao L, Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA 78:6324–6328PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chen WB, Han JF, Jong SC, Chang SC (2000) Isolation, purification, and characterization of a killer protein from Schwanniomyces occidentalis. Appl Environ Microbiol 66:5348–5352PubMedPubMedCentralCrossRefGoogle Scholar
  38. Chen C, Huang B, Anderson J, Byström AS (2011) Unexpected accumulation of ncm5U and ncm5S2U in a trm9 mutant suggests an additional step in the synthesis of mcm5U and mcm5S2U. PLoS One 6:e20783PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cheng RH, Castón JR, Wang GJ, Gu F, Smith TJ, Baker TS, Bozarth RF, Trus BL, Cheng N, Wickner RB et al (1994) Fungal virus capsids, cytoplasmic compartments for the replication of double-stranded RNA, formed as icosahedral shells of asymmetric Gag dimers. J Mol Biol 244:255–258PubMedCrossRefGoogle Scholar
  40. Choi EH, Chang HC, Chung EY (1990) Isolation and identification of wild killer yeast Candida dattila. Sanop Misaenqmul Hakhoechi 18:1–5Google Scholar
  41. Ciani M, Fatichenti F (2001) Killer toxin of Kluyveromyces phaffii DBVPG 6076 as a biopreservative agent to control apiculate wine yeasts. Appl Environ Microbiol 67:3058–3063PubMedPubMedCentralCrossRefGoogle Scholar
  42. Comitini F, De Ingeniis J, Pepe L, Mannazzu I, Ciani M (2004a) Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol Lett 238:235–240PubMedCrossRefGoogle Scholar
  43. Comitini F, Di Pietro N, Zacchi L, Mannazzu I, Ciani M (2004b) Kluyveromyces phaffii killer toxin active against wine spoilage yeasts: purification and characterization. Microbiology 150:2535–2541PubMedCrossRefGoogle Scholar
  44. Comitini F, Mannazzu I, Ciani M (2009) Tetrapisispora phaffii killer toxin is a highly specific β-glucanase that disrupts the integrity of the yeast cell wall. Microb Cell Fact 8:55PubMedPubMedCentralCrossRefGoogle Scholar
  45. Czaran TL, Hoekstra RF (2003) Killer-sensitive coexistence in metapopulations of micro-organisms. Proc Biol Sci 270:1373–1378PubMedPubMedCentralCrossRefGoogle Scholar
  46. Czaran TL, Hoekstra RF, Pagie L (2002) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci USA 99:786–790PubMedPubMedCentralCrossRefGoogle Scholar
  47. Da Silva S, Calado S, Lucas C, Aguiar C (2008) Unusual properties of the halotolerant yeast Candida nodaensis killer toxin, CnKT. Microbiol Res 163:243–251PubMedCrossRefGoogle Scholar
  48. Davis TS, Hofstetter RW, Foster JT, Foote NE, Keim P (2011) Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microb Ecol 61:626–634PubMedCrossRefGoogle Scholar
  49. De Ingeniis J, Raffaelli N, Ciani M, Mannazzu I (2009) Pichia anomala DBVPG 3003 secretes a ubiquitin-like protein that has antimicrobial activity. Appl Environ Microbiol 75:1129–1134PubMedCrossRefGoogle Scholar
  50. De la Peña P, Barros F, Gascón S, Lazo PS, Ramos S (1981) Effect of yeast killer toxin on sensitive cells of Saccharomyces cerevisiae. J Biol Chem 256:10420–10425PubMedGoogle Scholar
  51. De Souza Cabral A, Barroso de Carvalho PM, Pinotti T, Hagler A, Mendonça-Hagler LC, Macrae A (2009) Killer yeasts inhibit the growth of the phytopathogen Moniliophthora perniciosa, the causal agent of witches’ broom disease. Braz J Microbiol 40:108–110PubMedPubMedCentralCrossRefGoogle Scholar
  52. Dick KJ, Molan PC, Eschenbruch R (1992) The isolation from Saccharomyces cerevisiae of two antibacterial cationic proteins that inhibit malolactic bacteria. Vitis 31:105–116Google Scholar
  53. Dinman JD, Icho T, Wickner RB (1991) A-1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc Natl Acad Sci USA 88:174–178PubMedPubMedCentralCrossRefGoogle Scholar
  54. Durrett R, Levin S (1994) The importance of being discrete (and spatial). Theor Popul Biol 46:363–394CrossRefGoogle Scholar
  55. Ebersberger I, Gube M, Strauss S, Kupczok A, Eckart M, Voigt K, Kothe E, von Haesele A (2009) A stable backbone for the fungi. Available from Nature Precedings,
  56. Eisfeld K, Riffer F, Mentges J, Schmitt MJ (2000) Endocytotic uptake and retrograde transport of a virally encoded killer toxin in yeast. Mol Microbiol 37:926–940PubMedCrossRefGoogle Scholar
  57. Esteban R, Wickner RB (1986) Three different M1 RNA-containing viruslike particle types in Saccharomyces cerevisiae: in vitro M1 double-stranded RNA synthesis. Mol Cell Biol 6:1552–1561PubMedPubMedCentralCrossRefGoogle Scholar
  58. Farris GA, Mannazzu I, Budroni M (1991) Identification of killer factor in the yeast genus Metschnikowia. Biotechnol Lett 4:297–298CrossRefGoogle Scholar
  59. Ferraz LP, Cunha T, da Silva AC, Kupper KC (2016) Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiol Res 188–189:72–99CrossRefPubMedGoogle Scholar
  60. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA 109:21390–21395PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fleet GH (1991) Cell walls. In: Rose AH, Harrison JS (eds) The yeasts, Yeast organelles, vol 4. Academic, London, pp 199–277Google Scholar
  62. Fogleman JC, Foster JL (1989) Microbial colonization of injured cactus tissue (Stenocereus gummosus) and its relationship to the ecology of cactophilic Drosophila mojavensis. Appl Environ Microbiol 55:100–105PubMedPubMedCentralGoogle Scholar
  63. Fogleman JC, Starmer WT (1985) Analysis of the community structure of yeasts associated with the decaying stems of cactus. III Stenocereus thurberi. Microb Ecol 11:165–173PubMedCrossRefGoogle Scholar
  64. Frank SA (1994) Spatial polymorphism of bacteriocins and other allelopathic traits. Evol Ecol 8:369–386CrossRefGoogle Scholar
  65. Frohloff F, Fichtner L, Jablonowski D, Breuning KD, Schaffrath R (2001) Saccharomyces cerevisiae elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO J 20:1993–2003PubMedPubMedCentralCrossRefGoogle Scholar
  66. Fuentefria AM, Suh SO, Landell MF, Faganello Schrank JA, Vanstein MH, Blackwell M, Valente P (2008) Trichosporon insectorum sp. nov., a new anamorphic basidiomycetous killer yeast. Mycol Res 112:93–99PubMedCrossRefGoogle Scholar
  67. Fujimura T, Wickner RW (1988) Replicase of L-A viruslike particles of Saccharomyces cerevisiae. In vitro conversion of exogenous L-A and M1 single-stranded RNAs to double-stranded form. J Biol Chem 263:454–460PubMedGoogle Scholar
  68. Fujimura T, Ribas JC, Makhov AM, Wickner RB (1992) Pol of gag–pol fusion protein required for encapsidation of viral RNA of yeast L-A virus. Nature 359:746–749PubMedCrossRefGoogle Scholar
  69. Gacser A, Hamari Z, Pfeiffer I, Varga J, Kevei F, Kucsera J (2001) Genetic diversity in the red yeast Cryptococcus hungaricus and its phylogenetic relationship to some related basidiomycetous yeasts. FEMS Yeast Res 1:213–220PubMedGoogle Scholar
  70. Gage MJ, Bruenn J, Fischer M, SandersD STJ (2001) KP4 fungal toxin inhibits growth in Ustilago maydis by blocking calcium uptake. Mol Microbiol 41:775–785PubMedCrossRefGoogle Scholar
  71. Ganter PF (2011) Everything is not everywhere: the distribution of cactophilic yeast. In: Fontaneto D (ed) The biogeography of small organisms: is everything small everywhere? Cambridge University Press, Cambridge, pp 130–174CrossRefGoogle Scholar
  72. Ganter PF, Starmer WT (1992) Killer factor as a mechanism of interference competition in yeasts associated with cacti. Ecology 73:54–67CrossRefGoogle Scholar
  73. Ganter PF, Starmer WT, Lachance MA, Phaff HJ (1986) Yeast communities from host plants and associated Drosophila in southern Arizona: new isolations and analysis of the relative importance of hosts and vectors on community composition. Oecologia 70:386–392PubMedCrossRefGoogle Scholar
  74. Ghoul M, Mitri S (2016) The ecology and evolution of microbial competition. Trends Microbiol 24:833–845PubMedCrossRefGoogle Scholar
  75. Golubev WI (1989) Action spectrum of Rhodotorula glutinis mycocins and its taxonomic implications. Mikrobiologiya 58:99–103Google Scholar
  76. Golubev WI (1991a) Taxonomic evaluation of mycocins produced by the basidiomycetous yeast Cryptococcus podzolicus. Mikrobiologiya 60:115–121Google Scholar
  77. Golubev WI (1991b) Taxonomic evaluation of fungistatic mycocins produced by yeasts of Rhodotorula minuta complex. Mycol i Phytopathol 25:482–486Google Scholar
  78. Golubev WI (1992) Antibiotic activity and taxonomic position of Rhodotorula fujisanensis (Soneda) Johnson et Phaff. Mikrobiol Zhurnal (Kiev) 54:21–26Google Scholar
  79. Golubev WI (1998) Killer activity of Tilletiopsis albescens Gokhale: taxonomic and phylogenetic implication. Syst Appl Microbiol 21:429–432PubMedCrossRefGoogle Scholar
  80. Golubev WI (2006) Antagonistic interactions among yeasts. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 197–219CrossRefGoogle Scholar
  81. Golubev WI (2007) Mycocinogeny in smut yeast-like fungi of the genus Pseudozyma. Mikrobiologiia 76:719–722Google Scholar
  82. Golubev WI (2009) Anti-tremellomycetes activity of Cryptococcus pinus mycocin. Microbiology 78:315–320CrossRefGoogle Scholar
  83. Golubev WI (2016) Taxonomic specificity of the sensitivity to the Wickerhamomyces bovis fungistatic mycocin. Microbiology 85:444–448CrossRefGoogle Scholar
  84. Golubev WI, Blagodatskaya VM (1993) Taxonomic heterogeneity of Pichia membranifaciens Hansen revealed by killer-sensitive reactions. Mikrobiologiya 62:291–299Google Scholar
  85. Golubev WI, Blagodatskaya VM (1994) Intra- and intergeneric killing patterns of Pichia punctispora (Melard 1910) Dekker 1931 mycocins. Mikrobiologiya 63:637–642Google Scholar
  86. Golubev WI, Boekhout T (1995) Sensitivity to killer toxins as a taxonomic tool among heterobasidiomycetous yeasts. Stud Mycol 38:47–58Google Scholar
  87. Golubev WI, Churkina LG (1990) High incidence of killer strains in the yeast Rhodotorula mucilaginosa (Jorgensen) Harrison. Izv Akad Nauk SSSR (Ser Biol) N6:854–861Google Scholar
  88. Golubev WI, Churkina LG (2001) Specificity of yeast sensitivity to the mycocin of Tilletiopsis flava VKM Y-2823. Mikrobiologiya 70:51–54Google Scholar
  89. Golubev WI, Kuznetsova LB (1989) Formation and spectrum of action of the mycocins of the basidiomycetous yeast Cryptococcus laurentii (Kufferath) Skinner. Mikrobiologiya 58:980–984Google Scholar
  90. Golubev WI, Kuznetsova LB (1991) Taxonomic specificity of action spectrum of Filobasidium capsuligenum mycocin. Mikrobiologiya 60:530–536Google Scholar
  91. Golubev WI, Nakase T (1997) Mycocinogeny in the genus Bullera: taxonomic specificity of sensitivity to the mycocin produced by Bullera sinensis. FEMS Microbiol Lett 146:59–64PubMedCrossRefGoogle Scholar
  92. Golubev WI, Nakase T (1998) Mycocinogeny in the genus Bullera: killer activity of Bullera unica and intrageneric killer-sensitive relationships. Mikrobiologiya 67:225–230Google Scholar
  93. Golubev WI, Shabalin Y (1994) Microcin production by the yeast Cryptococcus humicola. FEMS Microbiol Lett 119:105–110PubMedCrossRefGoogle Scholar
  94. Golubev WI, Tomashevskaya A (2009) Characterization of mycocin secreted by Rhodotorula colostri (Castelli) Lodder. Biol Bull 36:311–316CrossRefGoogle Scholar
  95. Golubev WI, Tsiomenko AB (1985) Killer strains of ballistospore-producing yeast-like fungus Sporidiobolus salmonicolor. Dokl Akad Nauk USSR 282:425–428Google Scholar
  96. Golubev WI, Ikeda R, Shinoda T, Nakase T (1996) Mycocinogeny in the genus Bullera: Antitremellaceous yeast activity of killer toxin produced by Bullera hannae. J Gen Appl Microbiol 42:471–479CrossRefGoogle Scholar
  97. Golubev WI, Ikeda R, Shinoda T, Nakase T (1997) Antifungal activity of Bullera alba (Hanna) Derx. Mycoscience 38:25–29CrossRefGoogle Scholar
  98. Golubev WI, Kulakovskaya TV, Golubeva EW (2001) The yeast Pseudozyma fusiformata VKM Y-2821 producing an antifungal glycolipid. Microbiology 70:553–556CrossRefGoogle Scholar
  99. Golubev WI, Pfeiffer I, Golubeva E (2002) Mycocin production in Trichosporon pullulans populations colonizing tree exudates in the spring. FEMS Microbiol Ecol 40:151–157PubMedCrossRefGoogle Scholar
  100. Golubev WI, Gadanho M, Sampaio JP, Golubev NW (2003a) Cryptococcus nemorosus sp. nov. and Cryptococcus perniciosus sp. nov., related to Papiliotrema Sampaio et al. (Tremellales). Int J Syst Evol Microbiol 53:905–911PubMedCrossRefGoogle Scholar
  101. Golubev WI, Pfeiffer I, Churkina LG, Golubeva EW (2003b) Double-stranded RNA viruses in a mycocinogenic strain of Cystofilobasidium infirmominiatum. FEMS Yeast Res 3:63–68PubMedGoogle Scholar
  102. Golubev WI, Kulakovskaya T, Kulakovskaya E, Golubev NV (2004) The fungicidal activity of an extracellular glycolipid from Sympodiomycopsis paphiopedili Sugiyama et al. Microbiology 73:724–728CrossRefGoogle Scholar
  103. Golubev WI, Pfeiffer I, Golubeva E (2006) Mycocin production in Pseudozyma tsukubaensis. Mycopathologia 162:313–316PubMedCrossRefGoogle Scholar
  104. Golubev WI, Kulakovskaya TV, Shashkov AS, Kulakovskaya EV, Golubev NV (2008) Antifungal cellobiose lipid secreted by the epiphytic yeast Pseudozyma graminicola. Microbiology 77:171–175CrossRefGoogle Scholar
  105. Goretti M, Turchetti B, Buratta M, Branda E, Corazzi L, Vaughan-Martini A, Buzzini P (2009) In vitro antimycotic activity of a Williopsis saturnus killer protein against food spoilage yeasts. Int J Food Microbiol 131:178–182PubMedCrossRefGoogle Scholar
  106. Goto K, Iwatuki Y, Kitano K, Obata T, Hara S (1990) Cloning and nucleotide sequence of the KHR killer gene of Saccharomyces cerevisiae. Agric Biol Chem 54:979–984PubMedGoogle Scholar
  107. Goto K, Fukuda H, Kichise K, Kitano K, Hara S (1991) Cloning and nucleotide sequence of the KHS killer gene of Saccharomyces cerevisiae. Agric Biol Chem 55:1953–1958PubMedGoogle Scholar
  108. Greig D, Leu JY (2009) Natural history of budding yeast. Curr Biol 19:R886–R890PubMedCrossRefGoogle Scholar
  109. Greig D, Travisano M (2008) Density-dependent effects on allelopathic interactions in yeast. Evolution 62:521–527PubMedCrossRefGoogle Scholar
  110. Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981) Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J Bacteriol 145:382–390PubMedPubMedCentralGoogle Scholar
  111. Gurevitch A (1984) Population biology of the yeasts associated with plant necroses: effects of growth, colonization, and dispersal in a patch-structured environment. Dissertation, Syracuse University, Syracuse, NYGoogle Scholar
  112. Guyard C, Séguy N, Cailliez JC, Drobecq H, Polonelli L, Dei-Cas E, Mercenier A, Menozzi FD (2002a) Characterization of a Williopsis saturnus var. mrakii high molecular weight secreted killer toxin with broad-spectrum antimicrobial activity. J Antimicrob Chemother 49:961–971PubMedCrossRefGoogle Scholar
  113. Guyard C, Dehecq E, Tissier JP, Polonelli L, Dei-Cas E, Cailliez JC, Menozzi FD (2002b) Involvement of β-glucans in the wide-spectrum antimicrobial activity of Williopsis saturnus var. mrakii MUCL 41968 killer toxin. Mol Med 8:686–694PubMedPubMedCentralGoogle Scholar
  114. Hayman GT, Bolen BL (1991) Linear DNA plasmids of Pichia inositovora are associated with a novel killer toxin activity. Curr Genet 19:389–393PubMedCrossRefGoogle Scholar
  115. Heiligenstein S, Eisfeld K, Sendzik T, Jimenéz-Becker N, Breinig F, Schmitt MJ (2006) Retrotranslocation of a viral A/B toxin from the yeast endoplasmic reticulum is independent of ubiquitination and ERAD. EMBO J 25:4717–4727PubMedPubMedCentralCrossRefGoogle Scholar
  116. Heintel T, Zagorc T, Schmitt MJ (2001) Expression, processing and high level secretion of a virus toxin in fission yeast. Appl Microbiol Biotechnol 56:165–172PubMedCrossRefGoogle Scholar
  117. Hipp SS, Lawton WD, Chen NC, Gaafar HA (1974) Inhibition of Neisseria gonorrhoeae by a factor produced by Candida albicans. Appl Microbiol 27:192–196PubMedPubMedCentralGoogle Scholar
  118. Hishinuma F, Nakamura K, Hirai K, Nishizawa R, Gunge N, Maeda T (1984) Cloning and nucleotide sequence of the DNA killer plasmids from yeast. Nucleic Acids Res 12:7581–7597PubMedPubMedCentralCrossRefGoogle Scholar
  119. Hodgson VJ, Button D, Walker GM (1995) Anti-Candida activity of a novel killer toxin from the yeast Williopsis mrakii. Microbiology 141:2003–2012PubMedCrossRefGoogle Scholar
  120. Hua MX, Chi Z, Liu G, Buzdar MA, Chi ZM (2010) Production of a novel and cold-active killer toxin by Mrakia frigida 2E00797 isolated from sea sediment in Antarctica. Extremophiles 14:515–521PubMedCrossRefGoogle Scholar
  121. Huang B, Johansson MJ, Bystrom AS (2005) An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11:424–436PubMedPubMedCentralCrossRefGoogle Scholar
  122. Hutchins K, Bussey H (1983) Cell wall receptor for yeast killer toxin: involvement of (1–6)-β-D-glucan. J Bacteriol 154:161–169PubMedPubMedCentralGoogle Scholar
  123. Icho T, Wickner RB (1989) The double-stranded RNA genome of yeast virus L-A encodes its own putative RNA polymerase by fusing two open reading frames. J Biol Chem 264:6716–6723PubMedGoogle Scholar
  124. Iwasa Y, Nakamaru M, Sa L (1998) Allelopathy of bacteria in a lattice population: competition between colicin-sensitive and colicin-producing strains. Evol Ecol 12:785–802CrossRefGoogle Scholar
  125. İzgü F, Altinbay D (2004) Isolation and characterization of the K5-type yeast killer protein and its homology with an exo-β-1,3-glucanase. Biosci Biotechnol Biochem 68:685–693PubMedCrossRefGoogle Scholar
  126. İzgü F, Altinbay D, Sertkaya A (2005) Enzymic activity of the K5-type yeast killer toxin and its characterization. Biosci Biotechnol Biochem 69:2200–2206PubMedCrossRefGoogle Scholar
  127. Izgü F, Altinbay D, Türeli AE (2007a) In vitro susceptibilities of Candida spp. to Panomycocin, a novel exo-β-1,3-glucanase isolated from Pichia anomala NCYC 434. Microbiol Immunol 51:797–803PubMedCrossRefGoogle Scholar
  128. Izgü F, Altinbay D, Türeli AE (2007b) In vitro activity of panomycocin, a novel exo-β-1,3-glucanase isolated from Pichia anomala NCYC 434, against dermatophytes. Mycoses 50:31–34PubMedCrossRefGoogle Scholar
  129. Jablonowski D, Schaffrath R (2007) Zymocin, a composite chitinase and tRNase killer toxin from yeast. Biochem Soc Trans 35:1533–1537PubMedCrossRefGoogle Scholar
  130. Jablonowski D, Fichtner L, Martin VJ, Klassen R, Meinhardt F, Stark MJR, Schaffrath R (2001) Saccharomyces cerevisiae cell wall chitin, the potential Kluyveromyces lactis zymocin receptor. Yeast 18:1285–1299PubMedCrossRefGoogle Scholar
  131. Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R (2006) tRNAGlu wobble uridine methylation by Trm9 identifies Elongator’s key role for zymocin-induced cell death in yeast. Mol Microbiol 59:677–688PubMedCrossRefGoogle Scholar
  132. Janderova B, Gaskova D, Bendova O (1995) Consequences of Sporidiobolus pararoseus killer toxin action on sensitive cells. Folia Microbiol 40:165–167CrossRefGoogle Scholar
  133. Jeske S, Meinhardt F (2006) Autonomous cytoplasmic linear plasmid pPac1–1 of Pichia acaciae: molecular structure and expression studies. Yeast 23:479–486PubMedCrossRefGoogle Scholar
  134. Jeske S, Meinhardt F, Klassen R (2006) Extranuclear inheritance: virus-like DNA-elements in yeast. In: Esser K, Lüttge U, Kadereit J, Beyschlag W (eds) Progress in botany, vol 68. Springer, Berlin, pp 98–129CrossRefGoogle Scholar
  135. Jijakli MH, Lepoivre P (1998) Characterization of an exo-β-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology 88:335–343PubMedCrossRefGoogle Scholar
  136. Kagan B (1983) Mode of action of yeast killer toxins: channel formation in lipid bilayer membranes. Nature 302:709–711PubMedCrossRefGoogle Scholar
  137. Kagiyama S, Aiba T, Kadowaki K, Mori K (1988) New killer toxin of halophilic Hansenula anomala. Agric Biol Chem 52:1–7CrossRefGoogle Scholar
  138. Kalhor HR, Clarke S (2003) Novel methyltransferase for modified uridine residues at the wobble position of tRNA. Mol Cell Biol 23:9283–9292PubMedPubMedCentralCrossRefGoogle Scholar
  139. Kántor A, Hutková J, Petrová J, Hleba L, Kačániová M (2016) Antimicrobial activity of pulcherrimin pigment produced by Metschnikowia pulcherrima against various yeast species. J Microbiol Biotechnol Food Sci 5:282–285CrossRefGoogle Scholar
  140. Karamysheva ZN, Ksenzenko VN, Golubev WI, Ratner EN, Tikhomirova LP (1991) Characterization of viruses in the mycocinogenic strain of Cystofilobasidium bisporidii VKM Y-2700. Dokl Ross Akad Nauk 331:376–378Google Scholar
  141. Kasahara S, Inoue SB, Mio T, Yamada T, Nakajima T, Ichisima E, Furuichi Y, Yamada H (1994) Involvement of cell β-glucan in the action of HM-1 killer toxin. FEBS Lett 348:27–32PubMedCrossRefGoogle Scholar
  142. Kast A, Klassen R, Meinhardt F (2014) rRNA fragmentation induced by a yeast killer toxin. Mol Microbiol 91:606–617PubMedCrossRefGoogle Scholar
  143. Kast A, Voges R, Schroth M, Schaffrath R, Klassen R, Meinhardt F (2015) Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression. PLoS Genet 11:e1005005PubMedPubMedCentralCrossRefGoogle Scholar
  144. Kimura T, Kitamoto N, Matsuoka K, Nakamura K, Iimura Y, Kiro Y (1993) Isolation and nucleotide sequences of the genes encoding killer toxins from Hansenula mrakii and H. saturnus. Gene 137:265–270PubMedCrossRefGoogle Scholar
  145. Kimura T, Kitamoto N, Ohta Y, Kito Y, Iimura Y (1995) Structural relationships among killer toxins secreted from the killer strains of the genus Williopsis. J Ferment Bioeng 80:85–87CrossRefGoogle Scholar
  146. Kimura T, Komiyama T, Furuichi Y, Iimura Y, Karita S, Sakka K, Ohmiya K (1999) N-Glycosylation is involved in the sensitivity of Saccharomyces cerevisiae to HM-1 killer toxin secreted from Hansenula mrakii IFO 0895. App Microbiol Biotechnol 51:176–184CrossRefGoogle Scholar
  147. Kinkel LL, Schlatter DC, Xiao K, Baines AD (2014) Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J 8:249–256Google Scholar
  148. Kitamoto HK, Hasebe A, Ohmomo S, Suto EG, Muraki M, Iimura Y (1999) Prevention of aerobic spoilage of maize silage by genetically modified killer yeast, Kluyveromyces lactis, defective in the ability to grow on lactic acid. Appl Environ Microbiol 65:4697–4700PubMedPubMedCentralGoogle Scholar
  149. Klassen R, Meinhardt F (2002) Linear plasmids pWR1A and pWR1B of the yeast Wingea robertsiae are associated with a killer phenotype. Plasmid 48:142–148PubMedCrossRefGoogle Scholar
  150. Klassen R, Meinhardt F (2003) Structural and functional analysis of the killer element pPin1–3 from Pichia inositovora. Mol Gen Genomics 290:190–199CrossRefGoogle Scholar
  151. Klassen R, Meinhardt F (2005) Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin. Cell Microbiol 7:393–401PubMedCrossRefGoogle Scholar
  152. Klassen R, Meinhardt F (2007) Linear protein-primed replicating plasmids in eukaryotic microbes. In: Meinhardt F, Klassen R (eds) Microbial linear plasmids, microbiology monographs. Springer, Berlin, pp 187–226CrossRefGoogle Scholar
  153. Klassen R, Tontsidou L, Larsen M, Meinhardt F (2001) Genome organization of the linear cytoplasmic element pPE1B from Pichia etchellsii. Yeast 18:953–961CrossRefPubMedGoogle Scholar
  154. Klassen R, Teichert S, Meinhardt F (2004) Novel yeast killer toxins provoke S-phase arrest and DNA damage checkpoint activation. Mol Microbiol 53:263–273PubMedCrossRefGoogle Scholar
  155. Klassen R, Paluszynski J, Wemhoff S, Pfeiffer A, Fricke J, Meinhardt F (2008) The primary target of the killer toxin from Pichia acaciae is tRNAGln. Mol Microbiol 69:681–697PubMedCrossRefGoogle Scholar
  156. Klassen R, Kast A, Wünsche G, Paluszynski J, Meinhardt F (2014) Immunity factors for two related tRNAGln targeting killer toxins distinguish cognate and non-cognate toxic subunits. Curr Genet 60:213–222PubMedCrossRefGoogle Scholar
  157. Koltin Y, Day PR (1976) Inheritance of killer phenotypes and double-stranded RNA in Ustilago maydis. Proc Natl Acad Sci USA 73:594–598PubMedPubMedCentralCrossRefGoogle Scholar
  158. Komiyama T, Ohta T, Furuichi Y, Ohta Y, Tsukada Y (1995) Structure and activity of HYI killer toxin from Hansenula saturnus. Biol Pharm Bull 18:1057–1059PubMedCrossRefGoogle Scholar
  159. Komiyama T, Ohta T, Urakami H, Shiratori Y, Takasuka T, Satoh M, Watanabe T, Furuichi Y (1996) Pore formation on proliferating yeast Saccharomyces cerevisiae cell buds by HM-1 killer toxin. J Biochem 119:731–736PubMedCrossRefGoogle Scholar
  160. Komiyama T, Shirai T, Ohta T, Urakami H, Furuichi Y, Ohta Y, Tsukada Y (1998) Action properties of HYI killer toxin from Williopsis saturnus var. saturnus, and antibiotics, aculeacin A and papulacandin B. Biol Pharm Bull 21:1013–1019PubMedCrossRefGoogle Scholar
  161. Kono I, Himeno K (1997) A novel killer yeast effective on Schizosaccharomyces pombe. Biosci Biotechnol Biochem 61:563–564PubMedCrossRefGoogle Scholar
  162. Kulakovskaya TV, Karamysheva ZN, Andreeva NA, Golubev WI (1996) Some characteristics of Cystofilobasidium bisporidii mycocin. Mikrobiologiya 65:772–776Google Scholar
  163. Kulakovskaya T, Kulakovskaya E, Golubev W (2003) ATP leakage from yeast cells treated by extracellular glycolipids of Pseudozyma fusiformata. FEMS Yeast Res 3:401–404PubMedCrossRefGoogle Scholar
  164. Kulakovskaya TV, Shashkov AS, Kulakovskaya EV, Golubev WI (2005) Ustilagic acid secretion by Pseudozyma fusiformata strains. FEMS Yeast Res 5:919–923PubMedCrossRefGoogle Scholar
  165. Kulakovskaya TV, Golubev WI, Tomashevskaya MA, Kulakovskaya EV, Shashkov AS, Grachev AA, Chizhov AS, Nifantiev NE (2010) Production of antifungal cellobiose lipids by Trichosporon porosum. Mycopathologia 169:117–123PubMedCrossRefGoogle Scholar
  166. Kumbhar C, Watve M (2013) Why antibiotics: a comparative evaluation of different hypotheses for the natural role of antibiotics and an evolutionary synthesis. Nat Sci 5:26–40Google Scholar
  167. Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 8:939–954PubMedCrossRefGoogle Scholar
  168. Labbani FZ, Turchetti B, Bennamoun L, Dakhmouche S, Roberti R, Corazzi L, Meraihi Z, Buzzini P (2015) A novel killer protein from Pichia kluyveri isolated from an Algerian soil: purification and characterization of its in vitro activity against food and beverage spoilage yeasts. Antonie Van Leeuwenhoek 107:961–970PubMedCrossRefGoogle Scholar
  169. Laplace JM, Delgenes JP, Moletta R, Navarro JM (1992) Alcoholic glucose and xylose fermentations by the co-culture process: compatibility and typing of associated strains. Can J Microbiol 38:654–658PubMedCrossRefGoogle Scholar
  170. Lehmann PF, Cowan LE, Jones RM, Ferencak WJ (1987a) Use of killer fungi and antifungal chemicals in characterization of yeast species and biotypes. Trans Br Mycol Soc 88:199–206CrossRefGoogle Scholar
  171. Lehmann PF, Lemon MB, Ferencak WJ (1987b) Antifungal compounds (“killer factors”) produced by Kluyveromyces species and their detection on an improved medium containing glycerol. Mycologia 79:790–794CrossRefGoogle Scholar
  172. Leisner JJ, Haaber J (2012) Intraguild predation provides a selection mechanism for bacterial antagonistic compounds. Proc R Soc Lond B Biol Sci 279:4513–4521CrossRefGoogle Scholar
  173. Levin BR, Antonovics J, Sharma H (1988) Frequency-dependent selection in bacterial populations [and discussion]. Philos Trans R Soc B 319:459–472CrossRefGoogle Scholar
  174. Liu GL, Wang K, Hua MX, Buzdar MA, Chi ZM (2012) Purification and characterization of the cold-active killer toxin from the psychrotolerant yeast Mrakia frigida isolated from sea sediments in Antarctica. Process Biochem 47:822–827CrossRefGoogle Scholar
  175. Llorente P, Marquina D, Santos A, Peinado JM, Spencer-Martins I (1997) Effect of salt on the killer phenotype of yeasts from olive brines. Appl Environ Microbiol 63:1165–1167PubMedPubMedCentralGoogle Scholar
  176. Lowes KF, Shearman CA, Payne J, MacKenzie D, Archer DB, Merry RJ, Gasson MJ (2000) Prevention of yeast spoilage in feed and food by the yeast mycocin HMK. Appl Environ Microbiol 66:1066–1076PubMedPubMedCentralCrossRefGoogle Scholar
  177. Lu J, Huang B, Esberg A, Johansson MJ, Bystrom AS (2005) The Kluyveromyces lactis γ-toxin targets tRNA anticodons. RNA 11:1648–1654PubMedPubMedCentralCrossRefGoogle Scholar
  178. Lukša J, Podoliankaité M, Vepštaite I, Strazdaité-Žieliene Z, Urbonavičius J, Serviené E (2015) Yeast-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin. Eukaryot Cell 14:406–414PubMedPubMedCentralCrossRefGoogle Scholar
  179. Makower M, Bevan EA (1963) The inheritance of a killer character in yeast (Saccharomyces cerevisiae). In: Geerts SJ (ed) Genetics today: Proceedings of the XI international congress of genetics, The Hague. Pergamon Press, Oxford, p 202Google Scholar
  180. Maqueda M, Zamora E, Álvarez ML, Ramírez M (2012) Characterization, ecological distribution, and population dynamics of Saccharomyces Sensu Stricto killer yeasts in the spontaneous grape must fermentations of Southwestern Spain. Appl Environ Microbiol 78:735–743PubMedPubMedCentralCrossRefGoogle Scholar
  181. Marquina D, Santos A, Peinado JM (2002) Biology of killer yeasts. Int Microbiol 5:65–71PubMedCrossRefGoogle Scholar
  182. Maturano YM, Nally MC, Toro ME, Castellanos de Figueroa LI, Combina M, Vazquez F (2012) Monitoring of killer yeast populations in mixed cultures: influence of incubation temperature of microvinifications samples. World J Microbiol Biotechnol 28:3135–3142PubMedCrossRefGoogle Scholar
  183. McCracken DA, Martin VJ, Stark MJR, Bolen PL (1994) The linear-plasmid-encoded toxin produced by the yeast Pichia acaciae: characterization and comparison with the toxin of Kluyveromyces lactis. Microbiology 140:425–431PubMedCrossRefGoogle Scholar
  184. Mehlgarten C, Schaffrath R (2004) After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase. Cell Microbiol 6:569–580PubMedCrossRefGoogle Scholar
  185. Mehlomakulu NN, Setati ME, Divol B (2014) Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. Int J Food Microbiol 188:83–91PubMedCrossRefGoogle Scholar
  186. Meinhardt F, Klassen R (2009) Yeast killer toxins: fundamentals and applications. In: Anke T, Weber D (eds) The mycota, vol 15. Springer, Berlin, pp 107–130Google Scholar
  187. Meinhardt F, Schaffrath R (2001) Extranuclear inheritance: cytoplasmic linear double-stranded DNA killer elements of the dairy yeast Kluyveromyces lactis. In: Esser K, Lüttge U, Kadereit JW, Beyschlag W (eds) Progress in botany, vol 62. Springer, Berlin, pp 51–70CrossRefGoogle Scholar
  188. Middelbeek EJ, Peters JGWH, Stumm C, Vogel GD (1980a) Properties of a Cryptococcus laurentii killer toxin and conditional killing effect of the toxin on Cryptococcus albidus. FEMS Microbiol Lett 9:81–84CrossRefGoogle Scholar
  189. Middelbeek EJ, Stumm C, Vogel GD (1980b) Effects of a Pichia kluyveri killer toxin on sensitive cells. Antonie Van Leeuwenhoek 46:205–220PubMedCrossRefGoogle Scholar
  190. Miyamoto M, Onozato N, Selvakumar D, Kimura T, Furuichi Y, Komiyama T (2006) The role of the histidine-35 residue in the cytocidal action of HM-1 killer toxin. Microbiology 152:2951–2958PubMedCrossRefGoogle Scholar
  191. Miyamoto M, Furuichi Y, Komiyama T (2011) Genome-wide screen of Saccharomyces cerevisiae for killer toxin HM-1 resistance. Yeast 28:27–41PubMedCrossRefGoogle Scholar
  192. Miyamoto M, Furuichi Y, Komiyama T (2012) The high-osmolarity glycerol- and cell wall integrity-MAP kinase pathways of Saccharomyces cerevisiae are involved in adaptation to the action of killer toxin HM-1. Yeast 29:475–485PubMedCrossRefGoogle Scholar
  193. Morace G, Archibusacci C, Sestito M, Polonelli L (1983/1984) Strain differentiation of pathogenic yeasts by the killer system. Mycopathol 84:81–85CrossRefGoogle Scholar
  194. Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2011) Production of glycolipid biosurfactants, cellobiose lipids, by Cryptococcus humicola JCM 1461 and their interfacial properties. Biosci Biotechnol Biochem 75:1597–1599PubMedCrossRefGoogle Scholar
  195. Moriya K, Shimoii H, Sato S, Saito K, Tadenuma M (1987) Flocculent killer yeast for ethanol fermentation of beet molasses. Hakkokugaku Kaishi 65:393–397Google Scholar
  196. Muccilli S, Wemhoff S, Restuccia C, Meinhardt F (2013) Exoglucanase-encoding genes from three Wickerhamomyces anomalus killer strains isolated from olive brine. Yeast 30:33–43PubMedCrossRefGoogle Scholar
  197. Mushtaq M, Nahar S, Hashmi H (2010) Screening of killer-sensitive-pattern (KSP) for biotyping yeast strains isolated from slime fluxes of trees and flowers’ nectar. Pak J Bot 42:4313–4327Google Scholar
  198. Mushtaq M, Nahar S, Alam MS, Hashmi MH (2015) Screening of killer, sensitive and neutral phenotypes in yeasts using certain sensitive Pichia strains. Int J Biol Biotech 12:3–10Google Scholar
  199. Nagornaya SS, Zharova VP, Kotlyar AN (1989) Yeast antagonists in the normal microflora of the intestine tract in long-livers of Abkhazia. Mikrobiol Zh 51:34–39Google Scholar
  200. Naumov GI (1985) Comparative genetics of yeasts. XIII. Unusual inheritance of toxin production in Saccharomyces paradoxus Batschinskaya. Genetika 21:1794–1798PubMedGoogle Scholar
  201. Nguyen HV, Panon G (1998) The yeast Metschnikowia pulcherrima has an inhibitory effect against various yeast species. Sci Aliment 18:515–526Google Scholar
  202. Nomoto H, Kitano K, Shimizaki T, Kodama K, Hara S (1984) Distribution of killer yeasts in the genus Hansenula. Agric Biol Chem 48:807–809Google Scholar
  203. Orentaite I, Poranen MM, Oksanen HK, Daugelavicius R, Bamford DH (2016) K2 killer toxin-induced physiological changes in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 16:fow003PubMedCrossRefGoogle Scholar
  204. Oro L, Zara S, Fancellu F, Mannazzu I, Budroni M, Ciani M, Comitini M (2014) TpBGL2 codes for a Tetrapisispora phaffii killer toxin active against wine spoilage yeasts. FEMS Yeast Res 14:464–471PubMedCrossRefGoogle Scholar
  205. Paluszynski JP, Klassen R, Meinhardt F (2007) Pichia acaciae killer system: genetic analysis of toxin immunity. Appl Environ Microbiol 73:4373–4378PubMedPubMedCentralCrossRefGoogle Scholar
  206. Panchal CJ, Meacher C, van Oostrom J, Stewart GG (1985) Phenotypic expression of Kluyveromyces lactis killer toxin against Saccharomyces spp. Appl Environ Microbiol 50:257–260PubMedPubMedCentralGoogle Scholar
  207. Park CM, Bruenn JA, Ganesa C, Flurkey WF, Bozarth RF, Koltin Y (1994) Structure and heterologous expression of the Ustilago maydis viral toxin KP4. Mol Microbiol 11:155–164PubMedCrossRefGoogle Scholar
  208. Pfeiffer I, Golubev WI, Farkas Z, Kucsera J, Golubev N (2004) Mycocin production in Cryptococcus aquaticus. Antonie Van Leeuwenhoek 86:369–375PubMedCrossRefGoogle Scholar
  209. Phaff HJ, Starmer WT, Tredick-Kline J (1987) Pichia kluyveri sensu lato. A proposal for two new varieties and a new anamorph. In: de Hoog GS, Smith MT, Weijman ACM (eds) The expanding realm of yeast-like fungi: Proceedings of an international symposium on the perspectives of taxonomy, ecology and phylogeny of yeasts and yeast-like fungi, Studies in Mycology, vol 30. Elsevier, Amsterdam, pp 403–414Google Scholar
  210. Pieczynska MD, de Visser JA, Korona R (2013) Incidence of symbiotic dsRNA ‘killer’ viruses in wild and domesticated yeast. FEMS Yeast Res 13:856–859PubMedCrossRefGoogle Scholar
  211. Pintar J, Starmer WT (2003) The cost and benefits of killer toxin production by the yeast Pichia kluyveri. Antonie Van Leeuwenhoek 83:89–98PubMedCrossRefGoogle Scholar
  212. Polonelli L, Morace G (1986) Reevaluation of the yeast killer phenomenon. J Clin Microbiol 24:866–869PubMedPubMedCentralGoogle Scholar
  213. Polonelli L, Dettori G, Cattel C, Morace G (1987) Biotyping of mycelial fungus cultures by the killer system. Eur J Epidemiol 3:237–242PubMedCrossRefGoogle Scholar
  214. Price WS, Tsuchiya F, Suzuki C, Arata Y (1999) Characterization of the solution properties of Pichia farinosa killer toxin using PGSE NMR diffusion measurements. J Biomol NMR 13:113–117PubMedCrossRefGoogle Scholar
  215. Puchkov EO, Wiese A, Seydel U, Kulakovskaya T (2001) Cytoplasmic membrane of a sensitive yeast is a primary target for Cryptococcus humicola mycocidal compound (microcin). Biochim Biophys Acta 1512:239–250PubMedCrossRefGoogle Scholar
  216. Puchkov EO, Zähringer U, Lindner B, Kulakovskaya T, Seydel U, Wiese A (2002) The mycocidal, membrane-active complex of Cryptococcus humicola is a new type of cellobiose lipid with detergent features. Biochim Biophys Acta 1558:162–270Google Scholar
  217. Radler F, Herzberger S, Schwarz P (1993) Investigation of a killer strain of Zygosaccharomyces bailii. J Gen Microbiol 139:494–500CrossRefGoogle Scholar
  218. Reiter J, Herker E, Madeo F, Schmitt MJ (2005) Viral killer toxins induce caspase-mediated apoptosis in yeast. J Cell Biol 168:353–358PubMedPubMedCentralCrossRefGoogle Scholar
  219. Reuter M, Bell G, Greig D (2007) Increased outbreeding in yeast in response to dispersal by an insect vector. Curr Biol 17:R81–R83PubMedCrossRefGoogle Scholar
  220. Riffer F, Eisfeld K, Breinig F, Schmitt MJ (2002) Mutational analysis of K28 preprotoxin processing in the yeast Saccharomyces cerevisiae. Microbiology 148:1317–1328PubMedCrossRefGoogle Scholar
  221. Riley MA, Wertz JE (2002) Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364PubMedCrossRefGoogle Scholar
  222. Rivero D, Berna L, Stefanini I, Baruffini E, Bergerat A, Csikasz-Nagy A, De Filippo C, Cavalieri D (2015) Hsp12p and PAU genes are involved in ecological interactions between natural yeast strains. Environ Microbiol 17:3069–3081PubMedCrossRefGoogle Scholar
  223. Robinson RJ, Miller BS, Johnson JA, Curnutte B, Lord TH (1962) Studies of two polypeptide antibiotics elaborated by Saccharomyces cerevisiae. Cereal Chem 39:183–188Google Scholar
  224. Robledo-Leal E, Villarreal-Treviño L, González G (2012) Occurrence of killer yeasts in isolates of clinical origin. Trop Biomed 29:297–300PubMedGoogle Scholar
  225. Robledo-Leal E, Elizondo-Zertuche M, Villarreal-Treviño L, Treviño-Rangel Rde J, García-Maldonado N, Adame-Rodríguez JM, González GM (2014) Killer behavior within the Candida parapsilosis complex. Folia Microbiol 59:503–506CrossRefGoogle Scholar
  226. Rodrigues A, Cable RN, Mueller UG, Bacci M Jr, Pagnocca FC (2009) Antagonistic interactions between garden yeasts and microfungal garden pathogens of leaf-cutting ants. Antonie Van Leeuwenhoek 96:331–342PubMedCrossRefGoogle Scholar
  227. Rodríguez-Cousino N, Maqueda M, Ambrona J, Zamora E, Esteban R, Ramírez M (2011) A new wine Saccharomyces cerevisiae killer toxin (Klus) encoded by a double-stranded RNA virus, with broad antifungal activity is evolutionarily related to a chromosomal host gene. Appl Environ Microbiol 77:1822–1832PubMedPubMedCentralCrossRefGoogle Scholar
  228. Rogers D, Bevan EA (1978) Group classification of killer yeasts based on cross-reactions between strains of different species and origin. J Gen Microbiol 105:199–202CrossRefGoogle Scholar
  229. Rose A, Hildebrand PW (2015) NGL viewer: a web application for molecular visualization. Nucleic Acids Res 43:W576–W579PubMedPubMedCentralCrossRefGoogle Scholar
  230. Rosini G, Cantini M (1987) Killer character in Kluyveromyces yeasts: activity on Kloeckera apiculata. FEMS Microbiol Lett 44:81–84CrossRefGoogle Scholar
  231. Sáenz-Marta CI, Ballinas-Casarrubias MdL, Rivera-Chavira BE, Nevárez-Moorillón GV (2015) Biosurfactants as useful tools in bioremediation. In: Shiomi N (ed) Advances in bioremediation of wastewater and polluted soil. InTech, Rijeka. doi: 10.5772/60751
  232. Salgado Vital MJ, Abranches J, Hagler AN, Mendonca-Hagler LC (2002) Mycocinogenic yeasts isolated from Amazon soils of the Maraca ecological station, Roraima-Brazil. Braz J Microbiol 33:230–235CrossRefGoogle Scholar
  233. Santos A, Marquina D (2004) Ion channel activity by Pichia membranifaciens killer toxin. Yeast 21:151–162PubMedCrossRefGoogle Scholar
  234. Santos A, Marquina D (2011) The transcriptional response of Saccharomyces cerevisiae to proapoptotic concentrations of Pichia membranifaciens killer toxin. Fungal Genet Biol 48:979–989PubMedCrossRefGoogle Scholar
  235. Santos A, Marquina D, Leal JA, Peinado JM (2000) (1→6)-β-Glucan as cell wall receptor for Pichia membranifaciens killer toxin. Appl Environ Microbiol 66:1809–1813PubMedPubMedCentralCrossRefGoogle Scholar
  236. Santos A, Marquina D, Barroso J, Peinado JM (2002) (1→6)-β-D-glucan as the cell wall binding site for Debaryomyces hansenii killer toxin. Lett Appl Microbiol 34:95–99PubMedCrossRefGoogle Scholar
  237. Santos A, San Mauro M, Abrusci C, Marquina D (2007) Cwp2p, the plasma membrane receptor for Pichia membranifaciens killer toxin. Mol Microbiol 64:831–843PubMedCrossRefGoogle Scholar
  238. Santos A, San Mauro M, Bravo E, Marquina D (2009) PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Brettanomyces bruxellensis. Microbiology 155:624–634PubMedCrossRefGoogle Scholar
  239. Santos A, Alonso A, Belda I, Marquina D (2013) Cell cycle arrest and apoptosis, two alternative mechanisms for PMKT2 killer activity. Fungal Genet Biol 50:44–54PubMedCrossRefGoogle Scholar
  240. Satora P, Tuszynski T (2005) Biodiversity of yeasts during Plum Wegierka Zwykla spontaneous fermentation. Food Technol Biotechnol 43:277–282Google Scholar
  241. Satora P, Tarko T, Sroka P, Blaszczyk U (2014) The influence of Wickerhamomyces anomalus killer yeast on the fermentation and chemical composition of apple wines. FEMS Yeast Res 14:729–740PubMedCrossRefGoogle Scholar
  242. Satwika D, Klassen R, Meinhardt F (2012) Anticodon nuclease encoding virus like elements in yeast. Appl Microbiol Biotechnol 96:345–356PubMedCrossRefGoogle Scholar
  243. Sawant AD, Abdelal AT, Ahearn DG (1989) Purification and characterization of anti-Candida toxin of Pichia anomala WC 65. Antimicrob Agents Chemother 33:48–52PubMedPubMedCentralCrossRefGoogle Scholar
  244. Schaffrath R, Breunig KD (2000) Genetics and molecular physiology of Kluyveromyces lactis. Fungal Genet Biol 30:173–190PubMedCrossRefGoogle Scholar
  245. Schaffrath R, Leidel SA (2017) Wobble uridine modifications – a reason to live, a reason to die?! RNA Biol 23:1–14. doi: 10.1080/15476286.2017.1295204 CrossRefGoogle Scholar
  246. Schaffrath R, Meacock PA (1995) Kluyveromyces lactis killer plasmid pGKL2: molecular analysis of an essential gene, ORF5. Yeast 11:615–628PubMedCrossRefGoogle Scholar
  247. Schaffrath R, Meacock PA (1996) A cytoplasmic gene shuffle system in Kluyveromyces lactis: use of epitope-tagging to detect a killer plasmid-encoded gene product. Mol Microbiol 19:545–554PubMedCrossRefGoogle Scholar
  248. Schaffrath R, Meacock PA (2001) An SSB encoded by and operating on linear killer plasmids from Kluyveromyces lactis. Yeast 18:1239–1247PubMedCrossRefGoogle Scholar
  249. Schaffrath R, Meinhardt F (2005) Kluyveromyces lactis zymocin and other plasmid-encoded yeast killer toxins. In: Schmitt MJ, Schaffrath R (eds) Microbial protein toxins, vol 11. Springer, Berlin, pp 133–155CrossRefGoogle Scholar
  250. Schaffrath R, Soond SM, Meacock PA (1995a) The DNA and RNA polymerase structural genes of yeast plasmid pGKL2 are essential loci for plasmid integrity and maintenance. Microbiology 141:2591–2599PubMedCrossRefGoogle Scholar
  251. Schaffrath R, Soond SM, Meacock PA (1995b) Cytoplasmic gene expression in yeast: a plasmid-encoded transcription system in Kluyveromyces lactis. Biochem Soc Trans 23:128CrossRefGoogle Scholar
  252. Schaffrath R, Meinhardt F, Meacock PA (1996) Yeast killer plasmid pGKL2: molecular analysis of UCS5, a cytoplasmic promoter element essential for ORF5 gene function. Mol Gen Genet 250:286–294PubMedCrossRefGoogle Scholar
  253. Schaffrath R, Meinhardt F, Meacock PA (1999) Molecular manipulation of Kluyveromyces lactis linear DNA plasmids: gene targeting and plasmid shuffles. FEMS Microbiol Lett 178:201–210PubMedCrossRefGoogle Scholar
  254. Schaffrath R, Sasnauskas K, Meacock PA (2000) Use of gene shuffles to study the cytoplasmic transcription system operating on Kluyveromyces lactis linear DNA plasmids. Enzym Microb Technol 26:664–670CrossRefGoogle Scholar
  255. Schaffrath R, Abdel-Fattah W, Klassen R, Stark MJR (2014) The diphthamide modification pathway from Saccharomyces cerevisiae – Revisited. Mol Microbiol 94:1213–1226PubMedCrossRefGoogle Scholar
  256. Schlatter DC, Kinkel LL (2014) Global biogeography of Streptomyces antibiotic inhibition, resistance, and resource use. FEMS Microbiol Ecol 88:386–397PubMedCrossRefGoogle Scholar
  257. Schmitt MJ, Breinig F (2002) The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev 26:257–276PubMedCrossRefGoogle Scholar
  258. Schmitt MJ, Breinig F (2006) Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol 4:212–221PubMedCrossRefGoogle Scholar
  259. Schmitt M, Radler F (1988) Molecular structure of the cell wall receptor for killer toxin KT28 in Saccharomyces cerevisiae. J Bacteriol 170:2192–2196PubMedPubMedCentralCrossRefGoogle Scholar
  260. Schmitt MJ, Neuhausen F (1994) Killer toxin-secreting double-stranded RNA mycoviruses in the yeasts Hanseniaspora uvarum and Zygosaccharomyces bailii. J Virol 68:1765–1772PubMedPubMedCentralGoogle Scholar
  261. Schmitt MJ, Schernikau G (1997) Construction of a cDNA-based K1/K2/K28 triple killer strain of Saccharomyces cerevisiae. Food Technol Biotechnol 35:281–285Google Scholar
  262. Schmitt MJ, Tipper DJ (1990) K28, a unique double-stranded RNA killer virus of Saccharomyces cerevisiae. Mol Cell Biol 10:4807–4815PubMedPubMedCentralCrossRefGoogle Scholar
  263. Schmitt MJ, Tipper DJ (1995) Sequence of the M28 dsRNA: preprotoxin is processed to an α/β heterodimeric protein toxin. Virology 213:341–351PubMedCrossRefGoogle Scholar
  264. Schmitt MJ, Klavehn P, Wang J, Schönig I, Tipper DJ (1996) Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiology 142:2655–2662PubMedCrossRefGoogle Scholar
  265. Shemyakina TM, Vustin MM, Nesterenko MV, Timokhina EA, Sineoky SP (1991) New killer toxin produced by the yeast Williopsis subsufficiens and Williopsis beijerinckii. Mikrobiologiya 60:501–506Google Scholar
  266. Sinclair RM (2014) Persistence in the shadow of killers. Front Microbiol 5:342PubMedPubMedCentralGoogle Scholar
  267. Sor F, Fukuhara H (1985) Structure of a linear plasmid of the yeast Kluyveromyces lactis: compact organization of the killer genome. Curr Genet 9:147–155CrossRefGoogle Scholar
  268. Sriprakash KS, Batum C (1984) Possible chromosomal location for the killer determinant in Torulopsis glabrata. Curr Genet 8:115–119PubMedCrossRefGoogle Scholar
  269. Stark MJR, Boyd A (1986) The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode them. EMBO J 5:1995–2002PubMedPubMedCentralGoogle Scholar
  270. Stark MJ, Mileham AJ, Romanos MA, Boyd A (1984) Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Res 12:6011–6030PubMedPubMedCentralCrossRefGoogle Scholar
  271. Stark MJR, Boyd A, Mileham AJ, Romanos MA (1990) The plasmid-encoded killer system of Kluyveromyces lactis: a review. Yeast 6:1–29PubMedCrossRefGoogle Scholar
  272. Starmer WT (1982) Analysis of the community structure of yeasts associated with the decaying stems of cactus. I. Stenocereus gummosus. Microb Ecol 8:71–81PubMedCrossRefGoogle Scholar
  273. Starmer WT, Phaff HJ (1983) Analysis of the community structure of yeasts associated with the decaying stems of cactus. II. Opuntia species. Microb Ecol 9:247–259PubMedCrossRefGoogle Scholar
  274. Starmer WT, Ganter P, Aberddeen V, Lachance MA, Phaff HJ (1987) The ecological role of killer yeasts in natural communities of yeasts. Can J Microbiol 33:783–796PubMedCrossRefGoogle Scholar
  275. Starmer WT, Ganter PF, Aberdeen V (1992) Geographic distribution and genetics of killer phenotypes for the yeast Pichia kluyveri across the United States. Appl Environ Microbiol 58:990–997PubMedPubMedCentralGoogle Scholar
  276. Suzuki C, Nikkuni S (1994) The primary and subunit structure of a novel type killer toxin produced by a halotolerant yeast, P. farinosa. J Biol Chem 269:3041–3046PubMedGoogle Scholar
  277. Suzuki C, Yamada K, Okada N, Nikkuni S (1989) Isolation and characterization of halotolernat killer yeasts from fermented foods. Agric Biol Chem 53:2593–2597Google Scholar
  278. Suzuki C, Ando Y, Machida S (2001) Interaction of SMKT, a killer toxin produced by Pichia farinosa, with the yeast cell membranes. Yeast 18:1471–1478PubMedCrossRefGoogle Scholar
  279. Takasuka T, Komiyama T, Furuichi Y, Watanabe T (1995) Cell wall synthesis specific cytocidal effect of Hansenula mrakii toxin-1 on Saccharomyces cerevisiae. Cell Mol Biol Res 41:575–581PubMedGoogle Scholar
  280. Tao J, Ginsberg I, Banerjee N, Held W, Koltin Y, Bruenn JA (1990) Ustilago maydis KP6 killer toxin: structure, expression in Saccharomyces cerevisiae, and relationship to other cellular toxins. Mol Cell Biol 10:1373–1381PubMedPubMedCentralCrossRefGoogle Scholar
  281. Theisen S, Molkenau E, Schmitt MJ (2000) Wicaltin, a new protein toxin secreted by the yeast Williopsis californica and its broad-spectrum antimycoctic potential. J Microbiol Biotechnol 10:547–550Google Scholar
  282. Tipper DJ, Bostian KA (1984) Double-stranded ribonucleic acid killer systems in yeasts. Microbiol Rev 48:125–156PubMedPubMedCentralGoogle Scholar
  283. Tokunaga M, Wada N, Hishinuma F (1987) Expression and identification of immunity determinants on linear DNA killer plasmids pGKL1 and pGKL2 in Kluyveromyces lactis. Nucleic Acids Res 15:1031–1046PubMedPubMedCentralCrossRefGoogle Scholar
  284. Tokunaga M, Kawamura A, Hishinuma F (1989) Expression of pGKL killer 28K subunit in Saccharomyces cerevisiae: identification of 28K subunit as a killer protein. Nucleic Acids Res 17:3435–3446PubMedPubMedCentralCrossRefGoogle Scholar
  285. Uthman S, Liu S, Giorgini F, Stark MJS, Costanzo M, Schaffrath R (2013) Diphtheria disease and genes involved in formation of diphthamide, key effector of the diphtheria toxin. In: Kumar R (ed) Insight and control of infectious disease in global scenario. INTECH Open Access Publisher, pp 333–356Google Scholar
  286. Vadasz AS, Vadasz P, Gupthar AS, Abashar ME (2003) Theoretical and experimental evidence of extinction and coexistence of killer and sensitive strains of yeast grown as a mixed culture in water. Int J Food Microbiol 84:157–174PubMedCrossRefGoogle Scholar
  287. Vadkertiová R, Sláviková E (1995) Killer activity of yeasts isolated from the water environment. Can J Microbiol 41:759–766PubMedCrossRefGoogle Scholar
  288. Vadkertiová R, Sláviková E (2007) Killer activity of yeasts isolated from natural environments against some medically important Candida species. Pol J Microbiol 56:39–43PubMedGoogle Scholar
  289. Valzano M, Cecarini V, Cappelli A, Capone A, Bozic J, Cuccioloni M, Epis S, Petrelli D, Angeletti M, Eleuteri AM, Favia G, Ricci I (2016) A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites. Malar J 15:21PubMedPubMedCentralCrossRefGoogle Scholar
  290. Vaughan-Martini A, Rosini G (1989) Killer relationships within the yeast genus Kluyveromyces. Mycologia 81:317–321CrossRefGoogle Scholar
  291. Vaughan-Martini A, Rosini G, Martini A (1988) Killer sensitivity patterns as a tool for the fingerprinting of strains within the yeast species Kluyveromyces lactis and K. marxianus. Biotechnol Tech 2:293–296CrossRefGoogle Scholar
  292. Viljoen BC (2006) The ecological interactions. Yeast-yeast, yeast-bacteria, yeast-fungi interactions and yeasts as biocontrol agents. In: Querol A, Fleet G (eds) Yeasts in food and beverages, vol 2. Springer, Berlin, pp 83–110CrossRefGoogle Scholar
  293. Villalba ML, Sáez JS, del Monaco S, Lopes CA, Sangorrín MP (2016) TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts. Int J Food Microbiol 217:94–100PubMedCrossRefGoogle Scholar
  294. Vondrejs V (1987) Killer system in yeasts: applications to genetics and industry. Microbiol Sci 4:313–316PubMedGoogle Scholar
  295. Vustin MM, Babjeva IP, Reshetova IS, Shemyakina TM, Sineoki SP (1991) Taxonomic differentiation of basidiomycetous yeasts by sensitivity to killer toxin of Williopsis pratensis. Mikrobiologiya 60:345–349Google Scholar
  296. Vustin MM, Kalina EN, Babjeva IP, Reshetova IS, Sineoky SP (1993) Killer toxins in the yeast genus Debaryomyces. Mikrobiologiya 62:151–155Google Scholar
  297. Vustin MM, Vavilova EA, Sineoki SP (1988) The use of sensitivity to antibiotics produced by the representatives of the genera Williopsis and Zygowilliopsis for yeast identification. Mikrobiologiya 57:653–657Google Scholar
  298. Walker GM, McLeod AH, Hodgson VJ (1995) Interactions between killer yeasts and pathogenic fungi. FEMS Microbiol Lett 127:213–222PubMedCrossRefGoogle Scholar
  299. Wang X, Chi Z, Yue L, Li J (2007a) Purification and characterization of killer toxin from a marine yeast Pichia anomala YF07b against the pathogenic yeast in crab. Curr Microbiol 55:396–401PubMedCrossRefGoogle Scholar
  300. Wang X, Chi Z, Yue L, Li J, Li M, Wu L (2007b) A marine killer yeast against the pathogenic yeast strain in crab (Portunus trituberculatus) and an optimization of the toxin production. Microbiol Res 162:77–85PubMedCrossRefGoogle Scholar
  301. Wang X, Chi Z, Peng Y, Wang XH, Ru SG, Chi ZM (2012) Purification, characterization and gene cloning of the killer toxin produced by the marine-derived yeast Williopsis saturnus WC91–2. Microbiol Res 167:558–563PubMedCrossRefGoogle Scholar
  302. Weijman ACM, Golubev WI (1987) Carbohydrate patterns and taxonomy of yeasts and yeastlike fungi. Stud Mycol 30:361–371Google Scholar
  303. Weiler F, Schmitt MJ (2003) Zygocin, a secreted antifungal toxin of the yeast Zygosaccharomyces bailii, and its effect on sensitive fungal cells. FEMS Yeast Res 3:69–76PubMedGoogle Scholar
  304. Wemhoff S, Klassen R, Meinhardt F (2014) Site-directed mutagenesis of the heterotrimeric killer toxin zymocin identifies residues required for early steps in toxin action. Appl Environ Microbiol 80:6549–6559PubMedPubMedCentralCrossRefGoogle Scholar
  305. Wickner RB (1992) Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Annu Rev Microbiol 46:347–375PubMedCrossRefGoogle Scholar
  306. Wickner RB (1996) Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol Rev 10:250–265Google Scholar
  307. Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, Cordero OX, Brown SP, Momeni B, Shou W, Kettle H, Flint HJ, Haas AF, Laroche B, Kreft JU, Rainey PB, Freilich S, Schuster S, Milferstedt K, van der Meer JR, Grobetakopf T, Huisman J, Free A, Picioreanu C, Quince C, Klapper I, Labarthe S, Smets BF, Wang H, Isaac Newton Institute Fellows, Soyer OS (2016) Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J 10:2557–2568PubMedPubMedCentralCrossRefGoogle Scholar
  308. Williams ST, Vickers JC (1986) The ecology of antibiotic production. Microb Ecol 12:43–52PubMedCrossRefGoogle Scholar
  309. Wilson C, Whittaker PA (1989) Factors affecting activity and stability of the Kluyveromyces lactis killer toxin. Appl Environ Microbiol 55:695–699PubMedPubMedCentralGoogle Scholar
  310. Wloch-Salamon DM, Gerla D, Hoekstra RF, de Visser JA (2008) Effect of dispersal and nutrient availability on the competitive ability of toxin-producing yeast. Proc Biol Sci 275:535–541PubMedPubMedCentralCrossRefGoogle Scholar
  311. Wojcik M, Kordowska-Wiater M (2015) The occurrence of killer activity in yeasts isolated from natural habitats. Acta Biochim Pol 62:821–824PubMedCrossRefGoogle Scholar
  312. Woods DR, Bevan EA (1968) Studies on the nature of the killer factor produced by Saccharomyces cerevisiae. J Gen Microbiol 51:115–126PubMedCrossRefGoogle Scholar
  313. Worsham PL, Bolen PL (1990) Killer toxin production in Pichia acaciae is associated with linear DNA plasmids. Curr Genet 18:77–80PubMedCrossRefGoogle Scholar
  314. Yamamoto T, Iratani T, Hirata H, Imai M, Yamaguchi H (1986a) Killer toxin from Hansenula mrakii selectively inhibits cell wall synthesis in a sensitive yeast. FEBS Lett 197:50–54PubMedCrossRefGoogle Scholar
  315. Yamamoto T, Imai M, Tachibana K, Mayumi M (1986b) Application of monoclonal antibodies to the isolation and characterization of a killer toxin secreted by Hansenula mrakii. FEBS Lett 195:253–257PubMedCrossRefGoogle Scholar
  316. Yokomori Y, Akyiama H, Shimizu K (1988) Toxins of a wild Candida killer yeast with a novel killer property. Agric Biol Chem 52:2797–2801Google Scholar
  317. Young TW, Yagiu M (1978) A comparison of the killer character in different yeasts and its classification. Antonie Van Leeuwenhoek 44:59–77PubMedCrossRefGoogle Scholar
  318. Zekhnov AM, Soom YO, Nesterova GF (1989) New test strains for detecting the antagonistic activity of yeasts. Mikrobiologiya 58:807–811Google Scholar
  319. Zhu H, Bussey H (1989) The K1 toxin of Saccharomyces cerevisiae kills spheroplasts of many yeast species. Appl Environ Microbiol 55:2105–2107PubMedPubMedCentralGoogle Scholar
  320. Zhu H, Bussey H (1991) Mutational analysis of the functional domains of yeast K1 killer toxin. Mol Cell Biol 11:175–181PubMedPubMedCentralCrossRefGoogle Scholar
  321. Zhu YS, Zhang XY, Cartwright CP, Tipper DJ (1992) Kex2-dependent processing of yeast K1 killer preprotoxin includes cleavage at ProArg-44. Mol Microbiol 6:511–520PubMedCrossRefGoogle Scholar
  322. Zink S, Mehlgarten C, Kitamoto HK, Nagase J, Jablonowski D, Dickson RC, Stark MJR, Schaffrath R (2005) Mannosyl-diinositolphospho-ceramide, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin. Eukaryot Cell 4:879–889PubMedPubMedCentralCrossRefGoogle Scholar
  323. Zorg J, Kilian S, Radler F (1988) Killer toxin producing strains of the yeasts Hanseniaspora uvarum and Pichia kluyveri. Arch Microbiol 149:261–267CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut für Biologie (FG Mikrobiologie)Universität KasselKasselGermany
  2. 2.Department of Agricultural, Environmental and Food SciencesUniversity of PerugiaPerugiaItaly
  3. 3.Department of Biological Sciences, College of Life & Physical SciencesTennessee State UniversityNashvilleUSA

Personalised recommendations