Challenges in the Computational Implementation of Montagovian Lexical Semantics

  • Bruno MeryEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10247)


We present and discuss a general-purpose implementation of the process of lexical semantics analysis theorised in the Montagovian Generative Lexicon \(\varLambda TY_n\) (hereafter MGL). The prototype software itself constitutes a proof of concept of the MGL theory. The implementation process, as well as the data structures and algorithms, also provide valuable results as to the expressive power required by MGL. While the implementation of terms and types for the purpose of meaning assembly assumed by MGL is in itself straightforward, some lexical phenomena require additional mechanisms in order to process the logical representation in order to take into account implicit common-sense world knowledge. We therefore also present a minimal architecture for knowledge representation, and how it can be applied to different phenomena. The implementation illustrates the validity of the theory, but MGL requires a stronger corpus of types and terms in order to be thoroughly tested.


Lexical semantics Montagovian Generative Lexicon Knowledge representation for natural language semantics Typed lambda calculus Prototype software 


  1. 1.
    Asher, N.: Lexical Meaning in Context: A Web of Words. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  2. 2.
    Asher, N., Pustejovsky, J.: Word meaning and commonsense metaphysics. Semantics Archive, August 2005Google Scholar
  3. 3.
    Bekki, D.: Dependent type semantics: an introduction. In: Christoff, Z., Galeazzi, P., Gierasimczuk, N., Marcoci, A., Smet, S. (eds.) Logic and Interactive RAtionality (LIRa) Yearbook 2012, vol. 1, pp. 277–300. University of Amsterdam, Amsterdam (2014)Google Scholar
  4. 4.
    Bekki, D., Asher, N.: Logical polysemy and subtyping. In: Motomura, Y., Butler, A., Bekki, D. (eds.) JSAI-isAI 2012. LNCS, vol. 7856, pp. 17–24. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39931-2_2 CrossRefGoogle Scholar
  5. 5.
    Bierwisch, M.: Wördliche Bedeutung - eine pragmatische Gretchenfrag. In: Grewendorf, G. (ed.) Sprechakttheorie und Semantik, pp. 119–148. Surkamp, Frankfurt (1979)Google Scholar
  6. 6.
    Bosch, P.: The bermuda triangle: natural language semantics between linguistics, knowledge representation, and knowledge processing. In: Herzog, O., Rollinger, C.-R. (eds.) Text Understanding in LILOG. LNCS, vol. 546, pp. 241–258. Springer, Heidelberg (1991). doi: 10.1007/3-540-54594-8_64. CrossRefGoogle Scholar
  7. 7.
    Breitholtz, E.: Are widows always wicked? Learning concepts through enthymematic reasoning. In: Cooper, R., Retoré, C. (eds.) ESSLLI Proceedings of the TYTLES Workshop on TYpe Theory and LExical Semantics, Barcelona, August 2015Google Scholar
  8. 8.
    Chatzikyriakidis, S., Luo, Z.: Natural language inference in Coq. J. Log. Lang. Inf. 23(4), 441–480 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cooper, R.: Copredication, dynamic generalized quantification and lexical innovation by coercion. In: Fourth International Workshop on Generative Approaches to the Lexicon (2007)Google Scholar
  10. 10.
    Cruse, D.A.: Lexical Semantics. Cambridge University Press, New York (1986)Google Scholar
  11. 11.
    Fodor, J.A., Lepore, E.: The emptiness of the lexicon: reflections on James Pustejovsky’s the generative lexicon. Linguist. Inq. 29(2), 269–288 (1998)CrossRefGoogle Scholar
  12. 12.
    Im, S., Lee, C.: A developed analysis of type coercion based on type theory and conventionality. In: Cooper, R., Retoré, C. (eds.) ESSLLI Proceedings of the TYTLES Workshop on TYpe Theory and LExical Semantics, Barcelona, August 2015Google Scholar
  13. 13.
    Jacquey, E.: Ambiguïtés lexicales et traitement automatique des langues: modélisation de la polysémie logique et application aux déverbaux d’action ambigus en français. Ph.D. thesis, Université de Nancy 2 (2001)Google Scholar
  14. 14.
    Kinoshita, E., Mineshima, K., Bekki, D.: An analysis of selectional restrictions with Dependent Type Semantics. In: Proceedings of the 13th International Workshop on Logic and Engineering of Natural Language Semantics (LENLS 2013), pp. 100–113, November 2016Google Scholar
  15. 15.
    Link, G.: The logical analysis of plurals and mass terms: a lattice-theoretic approach. In: Portner, P., Partee, B.H. (eds.) Formal Semantics - The Essential Readings, pp. 127–147. Blackwell, Oxford (1983)Google Scholar
  16. 16.
    Luo, Z.: Contextual analysis of word meanings in type-theoretical semantics. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS, vol. 6736, pp. 159–174. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22221-4_11 CrossRefGoogle Scholar
  17. 17.
    Luo, Z.: Common nouns as types. In: Béchet, D., Dikovsky, A. (eds.) LACL 2012. LNCS, vol. 7351, pp. 173–185. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31262-5_12 CrossRefGoogle Scholar
  18. 18.
    Mery, B.: Modélisation de la Sémantique Lexicale dans le cadre de la Théorie des Types. Ph.D. thesis, Université de Bordeaux, July 2011Google Scholar
  19. 19.
    Mery, B.: Lexical semantics with linear types. In: NLCS 2015, The Third Workshop on Natural Language and Computer Science, Kyoto, Japan, July 2015Google Scholar
  20. 20.
    Mery, B.: Lessons from a prototype implementation of Montagovian lexical semantics. In: Proceedings of the 13th International Workshop on Logic and Engineering of Natural Language Semantics (LENLS 2013), pp. 73–85, November 2016Google Scholar
  21. 21.
    Mery, B., Moot, R., Retoré, C.: Computing the semantics of plurals and massive entities using many-sorted types. In: Murata, T., Mineshima, K., Bekki, D. (eds.) JSAI-isAI 2014. LNCS, vol. 9067, pp. 144–159. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48119-6_11 CrossRefGoogle Scholar
  22. 22.
    Mery, B., Moot, R., Retoré, C.: Typed Hilbert operators for the lexical semantics of singular and plural determiner phrases. In: Epsilon 2015 - Hilbert’s Epsilon and Tau in Logic, Informatics and Linguistics, Montpellier, France, June 2015Google Scholar
  23. 23.
    Mery, B., Retoré, C.: Are books events? Ontological inclusions as coercive sub-typing, lexical transfers as entailment. In: LENLS 2012, jSAI 2015, Kanagawa, Japan, November 2015Google Scholar
  24. 24.
    Mery, B., Retoré, C.: Classifiers, sorts, and base types in the Montagovian generative lexicon and related type theoretical frameworks for lexical compositional semantics. In: Chatzikyriakidis, S., Luo, Z. (eds.) Modern Perspectives in Type-Theoretical Semantics. SLP, vol. 98, pp. 163–188. Springer, Cham (2017). doi: 10.1007/978-3-319-50422-3_7 CrossRefGoogle Scholar
  25. 25.
    Moot, R.: Wide-coverage French syntax and semantics using Grail. In: Proceedings of Traitement Automatique des Langues Naturelles (TALN), Montreal (2010)Google Scholar
  26. 26.
    Moot, R., Prévot, L., Retoré, C.: A discursive analysis of itineraries in an historical and regional corpus of travels. In: Constraints in discourse. Ayay-roches-rouges, France, September 2011.
  27. 27.
    Moravcsik, J.M.: How do words get their meanings? J. Philos. 78(1), 5–24 (1982)CrossRefGoogle Scholar
  28. 28.
    Muskens, R.: Meaning and partiality. In: Cooper, R., de Rijke, M. (eds.) Studies in Logic, Langage and Information. CSLI, Stanford (1996)Google Scholar
  29. 29.
    Pustejovsky, J.: The Generative Lexicon. MIT Press, Cambridge (1995)Google Scholar
  30. 30.
    Real-Coelho, L.M., Retoré, C.: A generative Montagovian lexicon for polysemous deverbal nouns. In: 4th World Congress and School on Universal Logic - Workshop on Logic and Linguistics, Rio de Janeiro (2013)Google Scholar
  31. 31.
    Retoré, C.: Sémantique des déterminants dans un cadre richement typé (2013). CoRR abs/1302.1422.
  32. 32.
    Retoré, C.: The Montagovian generative lexicon lambda Ty\(_{n}\): a type theoretical framework for natural language semantics. In: Matthes, R., Schubert, A. (eds.) 19th International Conference on Types for Proofs and Programs (TYPES 2013). Leibniz International Proceedings in Informatics (LIPIcs), vol. 26, pp. 202–229. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2014).
  33. 33.
    Russell, B.: On denoting. Mind 14(56), 479–493 (1905). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LaBRI, Université de BordeauxBordeauxFrance

Personalised recommendations