Providing Sensor Services by Data Correlation: The #SmartME Approach

  • Nidhi Kushwaha
  • Giovanni Merlino
  • Longo Francesco
  • Bruneo Dario
  • Antonio Puliafito
  • O. P. Vyas
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 611)


In the current era Internet is the most used medium for sharing and retrieving the information for building applications which are commonly developed for enhancing the user experience in terms of comfort, communication. For this, the need of real-time sensor data gains importance. The data collected from the physical objects should be easily available for different applications. Semantic representation of the sensor data directly addresses the problem of storing it in logical, easily accessible and extensible manner. Our paper works towards converting the already collected sensor data of the #SmartME project into semantic format and also proposes real-time storage of semantically enriched sensor data. To build applications using these sensor data the authors consider mainly three kinds of sensors, i.e., Temperature, Humidity, Pressure. Predicting the observed value of any sensor data is the main aim of this work. The analysis leverages other sensors & environmental parameters such as Date, Time, Longitude, Latitude, Altitude etc. Correlation among these parameters and the accuracy of the predicted results showed the suitability of our proposed idea.


SmartME IoT Sensor network Stack4Things Semantic web Data mining Correlations 


  1. 1.
    Bruneo, D., Distefano, S., Longo, F., Merlino, G.: An IOT testbed for the software defined city vision: the # smartme project. In: 2016 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 1–6. IEEE (2016)Google Scholar
  2. 2.
    Consoli, S., Mongiovic, M., Nuzzolese, A.G., Peroni, S., Presutti, V., Reforgiato Recupero, D., Spampinato, D.: A smart city data model based on semantics best practice and principles. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1395–1400. ACM (2015)Google Scholar
  3. 3.
    Han, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco (2005)Google Scholar
  4. 4.
    Kojima, K.: Prediction of individual thermal sensation using unspecified sensors in sensor networks. In: International Conference on Control, Automation and Systems, ICCAS 2008, pp. 123–126. IEEE (2008)Google Scholar
  5. 5.
    Longo, F., Bruneo, D., Distefano, S., Merlino, G., Puliafito, A.: Stack4things: a sensing-and-actuation-as-a-service framework for IOT and cloud integration. Ann. Telecommun. 72, 1–18 (2016)Google Scholar
  6. 6.
    Maddox, T.: Smart cities: 6 essential technologies (2016). Accessed 26 Mar 2017
  7. 7.
    Neuhaus, H., Compton, M.: The semantic sensor network ontology. In: AGILE Workshop on Challenges in Geospatial Data Harmonisation, Hannover, Germany, pp. 1–33 (2009)Google Scholar
  8. 8.
    Pfisterer, D., Romer, K., Bimschas, D., Kleine, O., Mietz, R., Truong, C., Hasemann, H., Kröller, A., Pagel, M., Hauswirth, M., et al.: Spitfire: toward a semantic web of things. IEEE Commun. Mag. 49(11), 40–48 (2011)CrossRefGoogle Scholar
  9. 9.
    Ploennigs, J., Schumann, A., Lécué, F.: Adapting semantic sensor networks for smart building diagnosis. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 308–323. Springer, Cham (2014). doi: 10.1007/978-3-319-11915-1_20 Google Scholar
  10. 10.
    Ploennigs, J., Schumann, A., Lecue, F.: Extending semantic sensor networks for automatically tackling smart building problems. In: Proceedings of the Twenty-first European Conference on Artificial Intelligence, pp. 1211–1212. IOS Press (2014)Google Scholar
  11. 11.
    Sheth, A., Henson, C., Sahoo, S.S.: Semantic sensor web. IEEE Internet Comput. 12(4), 78–83 (2008)CrossRefGoogle Scholar
  12. 12.
    Wei, W., Barnaghi, P.: Semantic annotation and reasoning for sensor data. In: European Conference on Smart Sensing and Context, pp. 66–76. Springer (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Nidhi Kushwaha
    • 1
  • Giovanni Merlino
    • 1
  • Longo Francesco
    • 1
  • Bruneo Dario
    • 1
  • Antonio Puliafito
    • 1
  • O. P. Vyas
    • 2
  1. 1.Department of EngineeringUniversity of MessinaMessinaItaly
  2. 2.Department of Information TechnologyIIIT-Naya RaipurRaipurIndia

Personalised recommendations