A Dual Processor Energy-Efficient Platform with Multi-core Accelerator for Smart Sensing

  • Antonio Pullini
  • Stefan Mach
  • Michele Magno
  • Luca Benini
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 205)


Energy-efficient computing has increasingly come into focus of research and industry over the last decade. Ultra-low-power architectures are a requirement for distributed sensing, wearable electronics, Internet of Things and consumer electronics. In this paper, we present a dual-mode platform that includes an ultra-low power Cortex Arm M4 microcontroller coupled with a highly energy efficient multi-core parallel processor. The platform is designed to maximize the energy efficiency in sensors applications by exploiting the Cortex Arm M4 to achieve ultra-low power processing and power management, and enables the multi-core processor to provide additional computational power for near-sensor data centric processing (i.e. accelerating Convolutional Neural Networks for image classification) increasing energy efficiency. The proposed platform enhances the application scenarios where on-board processing (i.e. without streaming out the sensor data) enables intensive computation to extract complex features. The platform is geared towards applications with limited energy budget, as for example in mobile or wearable scenarios where the devices are supplied by a battery. Experimental results confirm the energy efficiency of the platform, demonstrate the low power consumption, and the benefits of combining the two processing engines. Compared to a pure microcontroller platform we provide a boost of 80× in terms of computational power when running general purpose code and a boost of 560× when performing convolutions. Within a reasonable power budged of 20 mW compatible to battery-operated scenarios the system can perform 345 MOPS of general purpose code or 1.5 GOPS of convolutions.


Low power design Sensors platform Energy efficiency Power management Multi-core processor 


  1. 1.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  2. 2.
    Da Xu, L., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans. Ind. Inform. 10(4), 2233–2243 (2014)CrossRefGoogle Scholar
  3. 3.
    Govindaraju, V., Rao, C.: Machine Learning: Theory and Applications. Elsevier, Amsterdam (2013)Google Scholar
  4. 4.
    Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine learning: an artificial convolutional networks. In: Proceedings of the 52nd Annual Design Automation Conference, p. 108. ACM (2013)Google Scholar
  5. 5.
    Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “big data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)CrossRefGoogle Scholar
  6. 6.
    Hwang, K., Dongarra, J., Fox, G.C.: Distributed and Cloud Computing: From Parallel Processing to the Internet of Things. Morgan Kaufmann, Boston (2013)Google Scholar
  7. 7.
    Kahng, A.B., Kang, S., Kumar, R., Sartori, J.: Enhancing the efficiency of energy-constrained DVFS designs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(10), 1769–1782 (2013)CrossRefGoogle Scholar
  8. 8.
    Wang, Z., Liu, Y., Sun, Y., Li, Y., Zhang, D., Yang, H.: An energy-efficient heterogeneous dual-core processor for Internet of Things. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon (2015)Google Scholar
  9. 9.
    Dreslinski, et al.: Centip3De: a 64-core, 3D stacked, near-threshold system. IEEE Micro 33(2), 8–16 (2013)CrossRefGoogle Scholar
  10. 10.
    Jeon, D., Kim, Y., Lee, I., Zhang, Z., Blaauw, D., Sylvester, D.: A 470 mV 2.7 mW feature extraction-accelerator for micro-autonomous vehicle navigation in 28 nm CMOS. In: Proceedings of 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 166–168 (2013)Google Scholar
  11. 11.
    Yoon, J.-S., Kim, J.-H., Kim, H.-E., Lee, W.-Y., Kim, S.-H., Chung, K., Park, J.-S., Kim, L.-S.: A unified graphics and vision processor with a 0.89 uW/fps pose estimation engine for augmented reality. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(2), 206–216 (2013)CrossRefGoogle Scholar
  12. 12.
    Ghasemzadeh, H., Jafari, R.: Ultra low-power signal processing in wearable monitoring systems: a tiered screening architecture with optimal bit resolution. ACM Trans. Embed. Comput. Syst. (TECS) 13(1) (2013). Article No. 9Google Scholar
  13. 13.
    Magno, M., Brunelli, D., Sigrist, L., Andri, R., Cavigelli, L., Gomez, A., Benini, L.: InfiniTime: multi-sensor wearable bracelet with human body harvesting. Sustain. Comput. Inform. Syst. 11, 38–49 (2016)Google Scholar
  14. 14.
    Cavigelli, L., Magno, M., Benini, L.: Accelerating real-time embedded scene labeling with convolutional networks. In: Proceedings of the 52nd Annual Design Automation Conference, p. 108. ACM, June 2015Google Scholar
  15. 15.
    Magno, M., Spagnol, C., Benini, L., Popovici, E.: A low power wireless node for contact and contactless heart monitoring. Microelectron. J. 45(12), 1656–1664 (2014)CrossRefGoogle Scholar
  16. 16.
    Magno, M., Salvatore, G.A., Mutter, S., Farrukh, W., Troester, G., Benini, L.: Autonomous smartwatch with flexible sensors for accurate and continuous mapping of skin temperature. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 337–340. IEEE, May 2016Google Scholar
  17. 17.
    Rossi, D., et al.: A −1.8 V to 0.9 V body bias, 60 GOPS/W 4-core cluster in low-power 28 nm UTBB FD-SOI technology. In: SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). IEEE, Rohnert Park (2015)Google Scholar
  18. 18.
    Conti, F., Benini, L.: A ultra-low-energy convolution engine for fast brain-inspired vision in multicore clusters. In: 2015 Design, Automation and Test in Europe Conference and Exhibition (DATE), Grenoble, pp. 683–688 (2015)Google Scholar
  19. 19.
    Dreslinski, R., Wieckowski, M., Blaauw, D., Sylvester, D., Mudge, T.: Near-threshold computing: reclaiming Moore’s law through energy efficient integrated circuits. In: Proceedings of the IEEE, vol. 98, pp. 253–266, February 2010Google Scholar
  20. 20.
    Ickes, N., Sinangil, Y., Pappalardo, F., Guidetti, E., Chandrakasan, A.P.: A 10 pJ/cycle ultra-low-voltage 32-bit microprocessor system-on-chip. In: 2011 Proceedings of the ESSCIRC (ESSCIRC), pp. 159–162. IEEE, September 2011Google Scholar
  21. 21.
    Bol, D., De Vos, J., Hocquet, C., Botman, F., Durvaux, F., Boyd, S., Flandre, D., Legat, J.-D.: SleepWalker: a 25-MHz 0.4-V Sub-mm2 7-uW/MHz microcontroller in 65-nm LP/GP CMOS for low-carbon wireless sensor nodes. IEEE J. Solid-State Circ. 48, 20–32 (2013)CrossRefGoogle Scholar
  22. 22.
    Botman, F., Vos, J.D., Bernard, S., Stas, F., Legat, J.-D., Bol, D.: Bellevue: a 50 MHz variable-width SIMD 32 bit microcontroller at 0.37 V for processing-intensive wireless sensor nodes. In: Proceedings of 2014 IEEE Symposium on Circuits and Systems, pp. 1207–1210 (2014)Google Scholar
  23. 23.
    Fujita, T., Tanaka, T., Sonoda, K., Kanda, K., Maenaka, K.: Ultra low power ASIC for R-R interval extraction on wearable health monitoring system. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3780–3783, October 2013Google Scholar
  24. 24.
    Gautschi, M., et al.: Tailoring instruction-set extensions for an ultra-low power tightly-coupled cluster of OpenRISC cores. In: 2015 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), Daejeon, pp. 25–30 (2015)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

Authors and Affiliations

  • Antonio Pullini
    • 1
  • Stefan Mach
    • 1
  • Michele Magno
    • 1
  • Luca Benini
    • 1
  1. 1.Integrated Systems LaboratoryETH ZurichZurichSwitzerland

Personalised recommendations