Advertisement

Expression Platforms for Functional Metagenomics: Emerging Technology Options Beyond Escherichia coli

  • Anna Lewin
  • Rahmi Lale
  • Alexander Wentzel
Chapter

Abstract

Escherichia coli is the prime workhorse for various metagenomic applications due to the multitude of efficient tools available for genetic manipulation and controlled heterologous gene expression. However, metagenome-based bioprospecting efforts continuously target a wider spectrum of ecological niches in order to harvest new enzymes and bioactive compounds for industrial and medical applications from the enormous pool of natural microbial diversity. Consequently, the development of robust and flexible screening platforms that allow functional evaluation of an expanded fraction of the highly diverse metagenomic information is widely addressed in Functional Metagenomics research. The heterologous recognition of transcriptional regulators and promotors, diverse codon usages among environmental microorganisms, and sufficient supply of precursors for secondary metabolite formation are major challenges that are addressed by an increasing spectrum of alternative expression and host systems. This includes optimized broad host-range transfer and expression vectors, screening hosts for improved gene expression and metabolite formation, as well as cell-free expression systems to cover proteins that due to toxicity are inaccessible by in vivo screening methods. In this chapter, we provide a current overview of the state of the art of selected expression systems and host organisms useful for functional metagenome screening for new enzymes and bioactive metabolites, as emerging options beyond what is currently available in and for E. coli.

References

  1. Aakvik T, Degnes KF, Dahlsrud R, Schmidt F, Dam R, Yu L, Volker U, Ellingsen TE, Valla S (2009) A plasmid RK2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species. FEMS Microbiol Lett 296(2):149–158. doi: 10.1111/j.1574-6968.2009.01639.x PubMedCrossRefGoogle Scholar
  2. Ahn JH, Chu HS, Kim TW, Oh IS, Choi CY, Hahn GH, Park CG, Kim DM (2005) Cell-free synthesis of recombinant proteins from PCR-amplified genes at a comparable productivity to that of plasmid-based reactions. Biochem Biophys Res Commun 338(3):1346–1352. doi: 10.1016/j.bbrc.2005.10.094 PubMedCrossRefGoogle Scholar
  3. Alam MT, Merlo ME, Consortium S, Hodgson DA, Wellington EM, Takano E, Breitling R (2010) Metabolic modeling and analysis of the metabolic switch in Streptomyces coelicolor. BMC Genomics 11:202. doi: 10.1186/1471-2164-11-202 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Angelov A, Mientus M, Liebl S, Liebl W (2009) A two-host fosmid system for functional screening of (meta)genomic libraries from extreme thermophiles. Syst Appl Microbiol 32(3):177–185. doi: 10.1016/j.syapm.2008.01.003 PubMedCrossRefGoogle Scholar
  5. Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8(5):557–563. doi: 10.1016/j.coph.2008.04.008 PubMedCrossRefGoogle Scholar
  6. Baltz RH (2010) Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 37(8):759–772. doi: 10.1007/s10295-010-0730-9 PubMedCrossRefGoogle Scholar
  7. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clement C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80(1):1–43. doi: 10.1128/MMBR.00019-15 PubMedCrossRefGoogle Scholar
  8. Battke F, Herbig A, Wentzel A, Jakobsen ØM, Bonin M, Hodgson DA, Wohlleben W, Ellingsen TE, Consortium S, Nieselt K (2011) A technical platform for generating reproducible expression data from Streptomyces coelicolor batch cultivations. In: Arabnia HR, Tran QN (eds) Software tools and algorithms for biological systems. Springer, New York, pp 3–15. doi: 10.1007/978-1-4419-7046-6_1 CrossRefGoogle Scholar
  9. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417(6885):141–147. doi: 10.1038/417141a PubMedCrossRefGoogle Scholar
  10. Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8(2):208–215. doi: 10.1016/j.mib.2005.02.016 PubMedCrossRefGoogle Scholar
  11. Biver S, Steels S, Portetelle D, Vandenbol M (2013) Bacillus subtilis as a tool for screening soil metagenomic libraries for antimicrobial activities. J Microbiol Biotechnol 23(6):850–855. doi: 10.4014/jmb.1212.12008 PubMedCrossRefGoogle Scholar
  12. Bjerga GEK, Williamson AK (2015) Cold shock induction of recombinant Arctic environmental genes. BMC Biotechnol 15(1):1–12. doi: 10.1186/s12896-015-0185-1 CrossRefGoogle Scholar
  13. Brady SF (2007) Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat Protoc 2(5):1297–1305. doi: 10.1038/nprot.2007.195 PubMedCrossRefGoogle Scholar
  14. Brouns SJ, Wu H, Akerboom J, Turnbull AP, de Vos WM, van der Oost J (2005) Engineering a selectable marker for hyperthermophiles. J Biol Chem 280(12):11422–11431. doi: 10.1074/jbc.M413623200 PubMedCrossRefGoogle Scholar
  15. Calhoun KA, Swartz JR (2007) Energy systems for ATP regeneration in cell-free protein synthesis reactions. Methods Mol Biol 375:3–17. doi: 10.1007/978-1-59745-388-2_1 PubMedGoogle Scholar
  16. Catherine C, Lee KH, Oh SJ, Kim DM (2013) Cell-free platforms for flexible expression and screening of enzymes. Biotechnol Adv 31(6):797–803. doi: 10.1016/j.biotechadv.2013.04.009 PubMedCrossRefGoogle Scholar
  17. Cava F, Laptenko O, Borukhov S, Chahlafi Z, Blas-Galindo E, Gomez-Puertas P, Berenguer J (2007) Control of the respiratory metabolism of Thermus thermophilus by the nitrate respiration conjugative element NCE. Mol Microbiol 64(3):630–646. doi: 10.1111/j.1365-2958.2007.05687.x PubMedCrossRefGoogle Scholar
  18. Cava F, Hidalgo A, Berenguer J (2009) Thermus thermophilus as biological model. Extremophiles 13(2):213–231. doi: 10.1007/s00792-009-0226-6 PubMedCrossRefGoogle Scholar
  19. Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4(4):449–460. doi: 10.1111/j.1751-7915.2011.00258.x PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cheng J, Pinnell L, Engel K, Neufeld JD, Charles TC (2014) Versatile broad-host-range cosmids for construction of high quality metagenomic libraries. J Microbiol Methods 99:27–34. doi: 10.1016/j.mimet.2014.01.015 PubMedCrossRefGoogle Scholar
  21. Cheng J, Romantsov T, Engel K, Doxey AC, Rose DR, Neufeld JD, Charles TC (2017) Functional metagenomics reveals novel beta-galactosidases not predictable from gene sequences. PLOS ONE 12(3):e0172545. doi: 10.1371/journal.pone.0172545
  22. Chu SF, Shu HY, Lin LC, Chen MY, Tsay SS, Lin GH (2006) Characterization of a rolling-circle replication plasmid from Thermus aquaticus NTU103. Plasmid 56(1):46–52. doi: 10.1016/j.plasmid.2006.01.005 PubMedCrossRefGoogle Scholar
  23. Cobb RE, Wang YJ, Zhao HM (2015) High-efficiency multiplex genome editing of streptomyces species using an engineered crispr/cas system. ACS Synth Biol 4(6):723–728. doi: 10.1021/sb500351f PubMedCrossRefGoogle Scholar
  24. Courtois F, Olguin LF, Whyte G, Bratton D, Huck WT, Abell C, Hollfelder F (2008) An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets. Chembiochem 9(3):439–446. doi: 10.1002/cbic.200700536 PubMedCrossRefGoogle Scholar
  25. Craig JW, Chang FY, Kim JH, Obiajulu SC, Brady SF (2010) Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental dna libraries in diverse proteobacteria. Appl Environ Microbiol 76(5):1633–1641. doi: 10.1128/Aem.02169-09 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18(2):119–138. doi: 10.1002/jmr.687 PubMedCrossRefGoogle Scholar
  27. Damon C, Vallon L, Zimmermann S, Haider MZ, Galeote V, Dequin S, Luis P, Fraissinet-Tachet L, Marmeisse R (2011) A novel fungal family of oligopeptide transporters identified by functional metatranscriptomics of soil eukaryotes. ISME J 5(12):1871–1880. doi: 10.1038/ismej.2011.67 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Danhorn T, Young CR, DeLong EF (2012) Comparison of large-insert, small-insert and pyrosequencing libraries for metagenomic analysis. ISME J 6:2056–2066. doi: 10.1038/ismej.2012.35 PubMedPubMedCentralCrossRefGoogle Scholar
  29. de Grado M, Castan P, Berenguer J (1999) A high-transformation-efficiency cloning vector for Thermus thermophilus. Plasmid 42(3):241–245. doi: 10.1006/plas.1999.1427 PubMedCrossRefGoogle Scholar
  30. Drew D, Kim H (2012) Preparation of saccharomyces cerevisiae expression plasmids. Methods Mol Biol 866:41–46. doi: 10.1007/978-1-61779-770-5_4 PubMedCrossRefGoogle Scholar
  31. Du D, Zhu Y, Wei JH, Tian YQ, Niu G, Tan HR (2013) Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters. Appl Microbiol Biotechnol 97(14):6383–6396. doi: 10.1007/s00253-013-4836-7 PubMedCrossRefGoogle Scholar
  32. Ekkers DM, Cretoiu MS, Kielak AM, van Elsas JD (2012) The great screen anomaly-a new frontier in product discovery through functional metagenomics. Appl Microbiol Biotechnol 93(3):1005–1020. doi: 10.1007/s00253-011-3804-3 PubMedCrossRefGoogle Scholar
  33. Endo Y, Sawasaki T (2004) High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. J Struct Funct Genom 5(1–2):45–57. doi: 10.1023/B:JSFG.0000029208.83739.49 CrossRefGoogle Scholar
  34. Endoh T, Kanai T, Imanaka T (2007) A highly productive system for cell-free protein synthesis using a lysate of the hyperthermophilic archaeon, Thermococcus kodakaraensis. Appl Microbiol Biotechnol 74(5):1153–1161. doi: 10.1007/s00253-006-0753-3 PubMedCrossRefGoogle Scholar
  35. Feitelson JS, Malpartida F, Hopwood DA (1985) Genetic and biochemical characterization of the red gene cluster of Streptomyces coelicolor A3(2). J Gen Microbiol 131(9):2431–2441. doi: 10.1099/00221287-131-9-2431 PubMedGoogle Scholar
  36. Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica (Cairo) 2013:28. doi: 10.1155/2013/512840 Google Scholar
  37. Fernandez-Arrojo L, Guazzaroni ME, Lopez-Cortes N, Beloqui A, Ferrer M (2010) Metagenomic era for biocatalyst identification. Curr Opin Biotechnol 21(6):725–733. doi: 10.1016/j.copbio.2010.09.006 PubMedCrossRefGoogle Scholar
  38. Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 21(11):1266–1267. doi: 10.1038/nbt1103-1266b PubMedCrossRefGoogle Scholar
  39. Ferrer M, Beloqui A, Golyshina OV, Plou FJ, Neef A, Chernikova TN, Fernandez-Arrojo L, Ghazi I, Ballesteros A, Elborough K, Timmis KN, Golyshin PN (2007) Biochemical and structural features of a novel cyclodextrinase from cow rumen metagenome. Biotechnol J 2(2):207–213. doi: 10.1002/biot.200600183 PubMedCrossRefGoogle Scholar
  40. Ferrer M, Martinez-Martinez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9(1):22–34. doi: 10.1111/1751-7915.12309 PubMedCrossRefGoogle Scholar
  41. Foulston LC, Bibb MJ (2010) Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes. Proc Natl Acad Sci U S A 107(30):13461–13466. doi: 10.1073/pnas.1008285107 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gabor EM, Alkema WB, Janssen DB (2004) Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ Microbiol 6(9):879–886. doi: 10.1111/j.1462-2920.2004.00640.x PubMedCrossRefGoogle Scholar
  43. Gaida SM, Sandoval NR, Nicolaou SA, Chen Y, Venkataramanan KP, Papoutsakis ET (2015) Expression of heterologous sigma factors enables functional screening of metagenomic and heterologous genomic libraries. Nat Commun 6:7045. doi: 10.1038/ncomms8045 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71. doi: 10.1038/nature09523 PubMedCrossRefGoogle Scholar
  45. Geng A, Zou G, Yan X, Wang Q, Zhang J, Liu F, Zhu B, Zhou Z (2012) Expression and characterization of a novel metagenome-derived cellulase Exo2b and its application to improve cellulase activity in Trichoderma reesei. Appl Microbiol Biotechnol 96(4):951–962. doi: 10.1007/s00253-012-3873-y PubMedCrossRefGoogle Scholar
  46. Godiska R, Mead D, Dhodda V, Wu C, Hochstein R, Karsi A, Usdin K, Entezam A, Ravin N (2010) Linear plasmid vector for cloning of repetitive or unstable sequences in Escherichia coli. Nucleic Acids Res 38(6):e88. doi: 10.1093/nar/gkp1181 PubMedCrossRefGoogle Scholar
  47. Gomez-Escribano JP, Bibb MJ (2011) Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb Biotechnol 4(2):207–215. doi: 10.1111/j.1751-7915.2010.00219.x PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gomez-Escribano JP, Bibb MJ (2012) Streptomyces coelicolor as an expression host for heterologous gene clusters. Methods Enzymol 517:279–300. doi: 10.1016/B978-0-12-404634-4.00014-0 PubMedCrossRefGoogle Scholar
  49. Gomez-Escribano JP, Bibb MJ (2014) Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways. J Ind Microbiol Biotechnol 41(2):425–431. doi: 10.1007/s10295-013-1348-5 PubMedCrossRefGoogle Scholar
  50. Gomez-Escribano JP, Song LJ, Fox DJ, Yeo V, Bibb MJ, Challis GL (2012) Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem Sci 3(9):2716–2720. doi: 10.1039/c2sc20410j CrossRefGoogle Scholar
  51. Gruber S, Schwab H, Koefinger P (2015) Versatile plasmid-based expression systems for gram-negative bacteria—general essentials exemplified with the bacterium ralstonia eutropha H16. New Biotechnol 32(6):552–558. doi: 10.1016/j.nbt.2015.03.015 CrossRefGoogle Scholar
  52. Guazzaroni M-E, Silva-Rocha R, Ward RJ (2015) Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening. Microb Biotechnol 8(1):52–64. doi: 10.1111/1751-7915.12146 PubMedCrossRefGoogle Scholar
  53. Gust B, Chandra G, Jakimowicz D, Tian YQ, Bruton CJ, Chater KF (2004) Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv Appl Microbiol 54:107–128. doi: 10.1016/S0065-2164(04)54004-2 PubMedCrossRefGoogle Scholar
  54. Hain T, Otten S, von Both U, Chatterjee SS, Technow U, Billion A, Ghai R, Mohamed W, Domann E, Chakraborty T (2008) Novel bacterial artificial chromosome vector pUvBBAC for use in studies of the functional genomics of Listeria spp. Appl Environ Microbiol 74(6):1892–1901. doi: 10.1128/AEM.00415-07 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5(10):R245–R249. doi: 10.1016/S1074-5521(98)90108-9 PubMedCrossRefGoogle Scholar
  56. Heil JR, Cheng J, Charles TC (2012) Site-specific bacterial chromosome engineering: PhiC31 integrase mediated cassette exchange (IMCE). J Vis Exp 61. doi: 10.3791/3698
  57. Hethke C, Geerling AC, Hausner W, de Vos WM, Thomm M (1996) A cell-free transcription system for the hyperthermophilic archaeon Pyrococcus furiosus. Nucleic Acids Res 24(12):2369–2376. doi: 10.1093/nar/24.12.2369 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hidaka Y, Hasegawa M, Nakahara T, Hoshino T (1994) The entire population of Thermus thermophilus cells is always competent at any growth phase. Biosci Biotechnol Biochem 58(7):1338–1339. doi: 10.1271/bbb.58.1338 PubMedCrossRefGoogle Scholar
  59. Hidalgo A, Betancor L, Moreno R, Zafra O, Cava F, Fernandez-Lafuente R, Guisan JM, Berenguer J (2004) Thermus thermophilus as a cell factory for the production of a thermophilic Mn-dependent catalase which fails to be synthesized in an active form in Escherichia coli. Appl Environ Microbiol 70(7):3839–3844. doi: 10.1128/AEM.70.7.3839-3844.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Holz C, Prinz B, Bolotina N, Sievert V, Büssow K, Simon B, Stahl U, Lang C (2003) Establishing the yeast Saccharomyces cerevisiae as a system for expression of human proteins on a proteome-scale. J Struct Funct Genom 4(2–3):97–108. doi: 10.1023/A:1026226429429 CrossRefGoogle Scholar
  61. Hopwood DA (2007) Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, New YorkGoogle Scholar
  62. Hopwood DA, Wright HM (1983) CDA is a new chromosomally determined antibiotic from Streptomyces coelicolor A3(2). J Gen Microbiol 129:3575–3579. doi: 10.1099/00221287-129-12-3575 PubMedGoogle Scholar
  63. Hu H, Zhang Q, Ochi K (2002) Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans. J Bacteriol 184(14):3984–3991. doi: 10.1128/JB.184.14.3984-3991.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hu XP, Heath C, Taylor MP, Tuffin M, Cowan DA (2012) A novel extremely alkaliphilic and cold-active esterase from Antarctic desert soil. Extremophiles 16:79–86. doi: 10.1007/s00792-011-0407-y PubMedCrossRefGoogle Scholar
  65. Huang H, Zheng GS, Jiang WH, Hu H, Lu YH (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47(4):231–243. doi: 10.1093/abbs/gmv007 PubMedCrossRefGoogle Scholar
  66. Huo L, Rachid S, Stadler M, Wenzel SC, Muller R (2012) Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Chem Biol 19(10):1278–1287. doi: 10.1016/j.chembiol.2012.08.013 PubMedCrossRefGoogle Scholar
  67. Iqbal M, Mast Y, Amin R, Hodgson DA, Consortium S, Wohlleben W, Burroughs NJ (2012) Extracting regulator activity profiles by integration of de novo motifs and expression data: characterizing key regulators of nutrient depletion responses in Streptomyces coelicolor. Nucleic Acids Res 40(12):5227–5239. doi: 10.1093/nar/gks205 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jewett MC, Swartz JR (2004) Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol Bioeng 86(1):19–26. doi: 10.1002/bit.20026 PubMedCrossRefGoogle Scholar
  69. Jones AC, Gust B, Kulik A, Heide L, Buttner MJ, Bibb MJ (2013) Phage p1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster. PLoS One 8(7):e69319. doi: 10.1371/journal.pone.0069319 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kakirde KS, Parsley LC, Liles MR (2010) Size does matter: application-driven approaches for soil metagenomics. Soil Biol Biochem 42(11):1911–1923. doi: 10.1016/j.soilbio.2010.07.021
  71. Kennedy J, Marchesi JR, Dobson AD (2008) Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Factories 7:27. doi: 10.1186/1475-2859-7-27 CrossRefGoogle Scholar
  72. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, NorwichGoogle Scholar
  73. Kim HC, Kim DM (2009) Methods for energizing cell-free protein synthesis. J Biosci Bioeng 108(1):1–4. doi: 10.1016/j.jbiosc.2009.02.007 PubMedCrossRefGoogle Scholar
  74. Kim UJ, Shizuya H, de Jong PJ, Birren B, Simon MI (1992) Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Res 20(5):1083–1085. doi: 10.1093/nar/20.5.1083 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kim HC, Kim TW, Kim DM (2011) Prolonged production of proteins in a cell-free protein synthesis system using polymeric carbohydrates as an energy source. Process Biochem 2011(46):1366–1369. doi: 10.1016/j.procbio.2011.03.008 CrossRefGoogle Scholar
  76. King RW, Bauer JD, Brady SF (2009) An environmental DNA-derived type II polyketide biosynthetic pathway encodes the biosynthesis of the pentacyclic polyketide erdacin. Angew Chem 48:6257–6261. doi: 10.1002/anie.200901209 CrossRefGoogle Scholar
  77. Kintses B, van Vliet LD, Devenish SR, Hollfelder F (2010) Microfluidic droplets: new integrated workflows for biological experiments. Curr Opin Chem Biol 14(5):548–555. doi: 10.1016/j.cbpa.2010.08.013 PubMedCrossRefGoogle Scholar
  78. Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M, Hashimoto J, Takagi M, Omura S, Shin-ya K, Cane DE, Ikeda H (2013) Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol 2(7):384–396. doi: 10.1021/sb3001003 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kotlar HK, Lewin A, Johansen J, Throne-Holst M, Haverkamp T, Markussen S, Winnberg A, Ringrose P, Aakvik T, Ryeng E, Jakobsen K, Drabløs F, Valla S (2011) High coverage sequencing of DNA from microorganisms living in an oil reservoir 2.5 kilometres subsurface. Environ Microbiol Rep 3(6):674–681. doi: 10.1111/j.1758-2229.2011.00279.x PubMedCrossRefGoogle Scholar
  80. Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166(1):338–340. doi: 0021-9193/86/040338-03$02.00/0PubMedPubMedCentralCrossRefGoogle Scholar
  81. Koyama Y, Okamoto S, Furukawa K (1990) Cloning of alpha- and beta-galactosidase genes from an extreme thermophile, Thermus strain T2, and their expression in Thermus thermophilus HB27. Appl Environ Microbiol 56(7):2251–2254. doi: 0099-2240/90/072251-04$02.00/0PubMedPubMedCentralGoogle Scholar
  82. Kumar G, Chernaya G (2009) Cell-free protein synthesis using multiply-primed rolling circle amplification products. BioTechniques 47:637–639. doi: 10.2144/000113171 PubMedCrossRefGoogle Scholar
  83. Kwon YC, Oh IS, Lee N, Lee KH, Yoon YJ, Lee EY, Kim BG, Kim DM (2013) Integrating cell-free biosyntheses of heme prosthetic group and apoenzyme for the synthesis of functional P450 monooxygenase. Biotechnol Bioeng 110(4):1193–1200. doi: 10.1002/bit.24785 PubMedCrossRefGoogle Scholar
  84. Lam KN, Charles TC (2015) Strong spurious transcription likely a cause of DNA insert bias in typical metagenomic clone libraries. Microbiome 3:22. doi: 10.1101/013763 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lam KN, Cheng J, Engel K, Neufeld JD, Charles TC (2015) Current and future resources for functional metagenomics. Front Microbiol 6:1196. doi: 10.3389/fmicb.2015.01196 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lammle K, Zipper H, Breuer M, Hauer B, Buta C, Brunner H, Rupp S (2007) Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning. J Biotechnol 127(4):575–592. doi: 10.1016/j.jbiotec.2006.07.036 PubMedCrossRefGoogle Scholar
  87. Lasa I, de Grado M, de Pedro MA, Berenguer J (1992) Development of Thermus-Escherichia shuttle vectors and their use for expression of the Clostridium thermocellum celA gene in Thermus thermophilus. J Bacteriol 174(20):6424–6431. doi: 0021-9193/92/206424-08$02.00/0PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lee KH, Lee KY, Byun JY, Kim BG, Kim DM (2012) On-bead expression of recombinant proteins in an agarose gel matrix coated on a glass slide. Lab Chip 12(9):1605–1610. doi: 10.1039/c2lc21239k PubMedCrossRefGoogle Scholar
  89. Leis B, Angelov A, Mientus M, Li HJ, Pham VTT, Lauinger B, Bongen P, Pietruszka J, Goncalves LG, Santos H, Liebl W (2015a) Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus. Front Microbiol 6:275. doi: 10.3389/frricb.2015.00275 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Leis B, Heinze S, Angelov A, Pham VT, Thürmer A, Jebbar M, Golyshin PN, Streit WR, Daniel R, Liebl W (2015b) Functional screening of hydrolytic activities reveals an extremely thermostable cellulase from a deep-sea archaeon. Front Bioeng Biotechnol 3:95. doi: 10.3389/fbioe.2015.00095 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lewin A, Wentzel A, Valla S (2013) Metagenomics of microbial life in extreme temperature environments. Curr Opin Biotechnol 24(3):516–525. doi: 10.1016/j.copbio.2012.10.012 PubMedCrossRefGoogle Scholar
  92. Leza A, Palmeros B, García JO, Galindo E, Soberón-Chávez G (1996) Xanthomonas campestris as a host for the production of recombinant Pseudomonas aeruginosa lipase. J Ind Microbiol 16(1):22–28. doi: 10.1007/BF01569917 CrossRefGoogle Scholar
  93. Li C, Zhang F, Kelly WL (2011) Heterologous production of thiostrepton A and biosynthetic engineering of thiostrepton analogs. Mol Biosyst 7(1):82–90. doi: 10.1039/c0mb00129e PubMedCrossRefGoogle Scholar
  94. Liao H, McKenzie T, Hageman R (1986) Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. Proc Natl Acad Sci U S A 83(3):576–580. doi: pnas00307-0057PubMedPubMedCentralCrossRefGoogle Scholar
  95. Liebl W, Angelov A, Juergensen J, Chow J, Loeschcke A, Drepper T, Classen T, Pietruszka J, Ehrenreich A, Streit WR, Jaeger KE (2014) Alternative hosts for functional (meta) genome analysis. Appl Microbiol Biotechnol 98(19):8099–8109. doi: 10.1007/s00253-014-5961-7 PubMedCrossRefGoogle Scholar
  96. Liles MR, Williamson LL, Rodbumrer J, Torsvik V, Goodman RM, Handelsman J (2008) Recovery, purification, and cloning of high-molecular-weight DNA from soil microorganisms. Appl Environ Microbiol 74(10):3302–3305. doi: 10.1128/AEM.02630-07 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Loeschcke A, Thies S (2015) Pseudomonas putida—a versatile host for the production of natural products. Appl Microbiol Biotechnol 99(15):6197–6214. doi: 10.1007/s00253-015-6745-4 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Maldonado LA, Stach JE, Pathom-aree W, Ward AC, Bull AT, Goodfellow M (2005) Diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie Van Leeuwenhoek 87(1):11–18. doi: 10.1007/s10482-004-6525-0 PubMedCrossRefGoogle Scholar
  99. Marcone GL, Foulston L, Binda E, Marinelli F, Bibb M, Beltrametti F (2010) Methods for the genetic manipulation of Nonomuraea sp. ATCC 39727. J Ind Microbiol Biotechnol 37(10):1097–1103. doi: 10.1007/s10295-010-0807-5 PubMedCrossRefGoogle Scholar
  100. Martin JF, Santos-Beneit F, Rodriguez-Garcia A, Sola-Landa A, Smith MC, Ellingsen TE, Nieselt K, Burroughs NJ, Wellington EM (2012) Transcriptomic studies of phosphate control of primary and secondary metabolism in Streptomyces coelicolor. Appl Microbiol Biotechnol 95(1):61–75. doi: 10.1007/s00253-012-4129-6 PubMedCrossRefGoogle Scholar
  101. Martinez A, Kolvek SJ, Yip CL, Hopke J, Brown KA, MacNeil IA, Osburne MS (2004) Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol 70(4):2452–2463. doi: 10.1128/AEM.70.4.2452-2463.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Martinez A, Kolvek SJ, Hopke J, Yip CL, Osburne MS (2005) Environmental DNA fragment conferring early and increased sporulation and antibiotic production in Streptomyces species. Appl Environ Microbiol 71(3):1638–1641. doi: 10.1128/AEM.71.3.1638-1641.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Mather MW, Fee JA (1992) Development of plasmid cloning vectors for Thermus thermophilus HB8: expression of a heterologous, plasmid-borne kanamycin nucleotidyltransferase gene. Appl Environ Microbiol 58(1):421–425. doi: 0099-2240/92/010421-05$02.0O/OPubMedPubMedCentralGoogle Scholar
  104. Matsumura M, Aiba S (1985) Screening for thermostable mutant of kanamycin nucleotidyltransferase by the use of a transformation system for a thermophile, Bacillus stearothermophilus. J Biol Chem 260(28):15298–15303. doi: 260/28/15298PubMedGoogle Scholar
  105. Matthaei JH, Nirenberg MW (1961) The dependence of cell-free protein synthesis in E. coli upon RNA prepared from ribosomes. Biochem Biophys Res Commun 28(4):404–408. doi: pnas00214-0066CrossRefGoogle Scholar
  106. McMahon MD, Guan C, Handelsman J, Thomas MG (2012) Metagenomic analysis of Streptomyces lividans reveals host-dependent functional expression. Appl Environ Microbiol 78(10):3622–3629. doi: 10.1128/AEM.00044-12 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Medema MH, Breitling R, Bovenberg R, Takano E (2011) Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nat Rev Microbiol 9(2):131–137. doi: 10.1038/nrmicro2478 PubMedCrossRefGoogle Scholar
  108. Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27(2–3):385–410. doi: 10.1016/s0168-6445(03)00045-7 PubMedCrossRefGoogle Scholar
  109. Michel-Reydellet N, Woodrow K, Swartz J (2005) Increasing PCR fragment stability and protein yields in a cell-free system with genetically modified Escherichia coli extracts. J Mol Microbiol Biotechnol 9(1):26–34. doi: 10.1159/000088143 PubMedCrossRefGoogle Scholar
  110. Miteva V, Lantz S, Brenchley J (2008) Characterization of a cryptic plasmid from a Greenland ice core Arthrobacter isolate and construction of a shuttle vector that replicates in psychrophilic high G+C Gram-positive recipients. Extremophiles 12(3):441–449. doi: 10.1007/s00792-008-0149-7 PubMedCrossRefGoogle Scholar
  111. Miyake R, Kawamoto J, Wei YL, Kitagawa M, Kato I, Kurihara T, Esaki N (2007) Construction of a low-temperature protein expression system using a cold-adapted bacterium, Shewanella sp. strain Ac10, as the host. Appl Environ Microbiol 73(15):4849–4856. doi: 10.1128/AEM.00824-07 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Moreno R, Haro A, Castellanos A, Berenguer J (2005) High-level overproduction of His-tagged Tth DNA polymerase in Thermus thermophilus. Appl Environ Microbiol 71(1):591–593. doi: 10.1128/AEM.71.1.591-593.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Mullany P (2014) Functional metagenomics for the investigation of antibiotic resistance. Virulence 5(3):443–447. doi: 10.4161/viru.28196 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Murai N (2013) Review: plant binary vectors of Ti plasmid in agrobacterium tumefaciens with a broad host-range replicon of pRK2, pRi, pSa or pVS1. AJPS 4:932–939. doi: 10.4236/ajps.2013.44115 CrossRefGoogle Scholar
  115. Nakamura A, Takakura Y, Kobayashi H, Hoshino T (2005) In vivo directed evolution for thermostabilization of Escherichia coli hygromycin B phosphotransferase and the use of the gene as a selection marker in the host-vector system of Thermus thermophilus. J Biosci Bioeng 100(2):158–163. doi: 10.1263/jbb.100.158 PubMedCrossRefGoogle Scholar
  116. Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26(11):1362–1384. doi: 10.1039/b817069j PubMedPubMedCentralCrossRefGoogle Scholar
  117. Nevalainen KM, Te'o VS, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23(9):468–474. doi: 10.1016/j.tibtech.2005.06.002 PubMedCrossRefGoogle Scholar
  118. Nieselt K, Battke F, Herbig A, Bruheim P, Wentzel A, Jakobsen OM, Sletta H, Alam MT, Merlo ME, Moore J, Omara WA, Morrissey ER, Juarez-Hermosillo MA, Rodriguez-Garcia A, Nentwich M, Thomas L, Iqbal M, Legaie R, Gaze WH, Challis GL, Jansen RC, Dijkhuizen L, Rand DA, Wild DL, Bonin M, Reuther J, Wohlleben W, Smith MC, Burroughs NJ, Martin JF, Hodgson DA, Takano E, Breitling R, Ellingsen TE, Wellington EM (2010) The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics 11:10. doi: 10.1186/1471-2164-11-10 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Novakova J, Farkasovsky M (2013) Bioprospecting microbial metagenome for natural products. Biologia 68(6):1079–1086. doi: 10.2478/s11756-013-0246-7 CrossRefGoogle Scholar
  120. Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97(1):87–98. doi: 10.1007/s00253-012-4551-9 PubMedCrossRefGoogle Scholar
  121. Ochi K, Tanaka Y, Tojo S (2014) Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements. J Ind Microbiol Biotechnol 41(2):403–414. doi: 10.1007/s10295-013-1349-4 PubMedCrossRefGoogle Scholar
  122. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190(11):4050–4060. doi: 10.1128/JB.00204-08 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Okamoto-Hosoya Y, Sato TA, Ochi K (2000) Resistance to paromomycin is conferred by rpsL mutations, accompanied by an enhanced antibiotic production in Streptomyces coelicolor A3(2). J Antibiot 53(12):1424–1427. doi: 10.7164/antibiotics.53.1424 PubMedCrossRefGoogle Scholar
  124. Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadlay PF (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 25(4):447–453. doi: 10.1038/nbt1297 PubMedCrossRefGoogle Scholar
  125. Parachin NS, Gorwa-Grauslund MF (2011) Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenomic library. Biotechnol Biofuels 4:9. doi: 10.1186/1754-6834-4-9 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Parks RJ, Graham FL (1997) A helper-dependent system for adenovirus vector production helps define a lower limit for efficient dna packaging. J Virol 71(4):3293–3298. doi: 0022-538X/97/$04.0010PubMedPubMedCentralGoogle Scholar
  127. Pel J, Broemeling D, Mai L, Poon HL, Tropini G, Warren RL, Holt RA, Marziali A (2009) Nonlinear electrophoretic response yields a unique parameter for separation of biomolecules. Proc Natl Acad Sci U S A 106(35):14796–14801. doi: 10.1073/pnas.0907402106 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51. doi: 10.1146/annurev.micro.62.081307.162903 PubMedCrossRefGoogle Scholar
  129. Ramirez-Arcos S, Fernandez-Herrero LA, Marin I, Berenguer J (1998) Anaerobic growth, a property horizontally transferred by an Hfr-like mechanism among extreme thermophiles. J Bacteriol 180(12):3137–3143. doi: 0021-9193/98/$04.0010PubMedPubMedCentralGoogle Scholar
  130. Retallack D, Schneider JC, Chew L, Ramseier T, Allen J, Patkar A, Squires C, Talbot H, Mitchell J (2006) Pseudomonas fluorescens—a robust expression platform for pharmaceutical protein production. Microb Cell Factories 5(1):1–1. doi: 10.1186/1475-2859-5-s1-s28 CrossRefGoogle Scholar
  131. Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6(9):981–989. doi: 10.1111/j.1462-2920.2004.00664.x PubMedCrossRefGoogle Scholar
  132. Rigali S, Nothaft H, Noens EE, Schlicht M, Colson S, Muller M, Joris B, Koerten HK, Hopwood DA, Titgemeyer F, van Wezel GP (2006) The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 61(5):1237–1251. doi: 10.1111/j.1365-2958.2006.05319.x PubMedCrossRefGoogle Scholar
  133. Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9(7):670–675. doi: 10.1038/embor.2008.83 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, Henn MR, Chisholm SW (2009) Whole genome amplification and de novo assembly of single bacterial cells. PLoS One 4(9):e6864. doi: 10.1371/journal.pone.0006864 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66(6):2541–2547. doi: 10.1128/AEM.66.6.2541-2547.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Ruan L, Xu X (2007) Sequence analysis and characterizations of two novel plasmids isolated from Thermus sp. 4C. Plasmid 58(1):84–87. doi: 10.1016/j.plasmid.2007.04.001 PubMedCrossRefGoogle Scholar
  137. Rudd BA, Hopwood DA (1979) Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). J Gen Microbiol 114(1):35–43. doi: 10.1099/00221287-114-1-35 PubMedCrossRefGoogle Scholar
  138. Ruggero D, Creti R, Londei P (2006) In vitro translation of archaeal natural mRNAs at high temperature. FEMS Micobiol Lett 107(1):89–94. doi: 10.1111/j.1574-6968.1993.tb06009.x CrossRefGoogle Scholar
  139. Rungpragayphan S, Nakano H, Yamane T (2003) PCR-linked in vitro expression: a novel system for high-throughput construction and screening of protein libraries. FEBS Lett 540(1–3):147–150. doi: 10.1016/S0014-5793(03)00251-5 PubMedCrossRefGoogle Scholar
  140. Rutledge PJ, Challis GL (2015) Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 13(8):509–523. doi: 10.1038/nrmicro3496 PubMedCrossRefGoogle Scholar
  141. Sabree ZL, Rondon MR, Handelsman J (2009) Metagenomics. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Amsterdam, pp. 622–632. doi: 10.1016/B978-012373944-5.00034-1
  142. Sawasaki T, Hasegawa Y, Tsuchimochi M, Kamura N, Ogasawara T, Kuroita T, Endo Y (2002) A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett 514(1):102–105. doi: 10.1016/S0014-5793(02)02329-3 PubMedCrossRefGoogle Scholar
  143. Schwarzenlander C, Averhoff B (2006) Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 273(18):4210–4218. doi: 10.1111/j.1742-4658.2006.05416.x PubMedCrossRefGoogle Scholar
  144. Sherwood EJ, Bibb MJ (2013) The antibiotic planosporicin coordinates its own production in the actinomycete Planomonospora alba. Proc Natl Acad Sci U S A 110(27):E2500–E2509. doi: 10.1073/pnas.1305392110 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Shima J, Hesketh A, Okamoto S, Kawamoto S, Ochi K (1996) Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178(24):7276–7284. doi: 0021-9193/96/$04.0010PubMedPubMedCentralCrossRefGoogle Scholar
  146. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89(18):8794–8797. doi: pnas01092-0395PubMedPubMedCentralCrossRefGoogle Scholar
  147. Sitaraman K, Esposito D, Klarmann G, Le Grice SF, Hartley JL, Chatterjee DK (2004) A novel cell-free protein synthesis system. J Biotechnol 110(3):257–263. doi: 10.1016/j.jbiotec.2004.02.014 PubMedCrossRefGoogle Scholar
  148. Smanski MJ, Casper J, Peterson RM, Yu Z, Rajski SR, Shen B (2012) Expression of the platencin biosynthetic gene cluster in heterologous hosts yielding new platencin congeners. J Nat Prod 75(12):2158–2167. doi: 10.1021/np3005985 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Sosio M, Giusino F, Cappellano C, Bossi E, Puglia AM, Donadio S (2000) Artificial chromosomes for antibiotic-producing actinomycetes. Nat Biotechnol 18(3):343–345. doi: 10.1038/73810 PubMedCrossRefGoogle Scholar
  150. Strausberg RL, Strausberg SL (2001) Overview of protein expression in saccharomyces cerevisiae. In: Current protocols in protein science. Wiley, Hoboken. doi: 10.1002/0471140864.ps0506s02 Google Scholar
  151. Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13(9):11643–11665. doi: 10.3390/ijms130911643 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Tabata K, Kosuge T, Nakahara T, Hoshino T (1993) Physical map of the extremely thermophilic bacterium Thermus thermophilus HB27 chromosome. FEBS Lett 331(1–2):81–85. doi: 10.1016/0014-5793(93)80301-A PubMedCrossRefGoogle Scholar
  153. Tachibana A, Tanaka T, Taniguchi M, Oi S (1996) Evidence for farnesol-mediated isoprenoid synthesis regulation in a halophilic archaeon, Haloferax volcanii. FEBS Lett 379(1):43–46. doi: 10.1016/0014-5793(95)01479-9 PubMedCrossRefGoogle Scholar
  154. Takai K, Sawasaki T, Endo Y (2010) The wheat-germ cell-free expression system. Curr Pharm Biotechnol 11(3):272–278. doi: 10.1016/j.febslet.2014.05.061 PubMedCrossRefGoogle Scholar
  155. Tamakoshi M, Uchida M, Tanabe K, Fukuyama S, Yamagishi A, Oshima T (1997) A new Thermus-Escherichia coli shuttle integration vector system. J Bacteriol 179(15):4811–4814. doi: 0021-9193/97/$04.0010PubMedPubMedCentralCrossRefGoogle Scholar
  156. Taupp M, Mewis K, Hallam SJ (2011) The art and design of functional metagenomic screens. Curr Opin Biotechnol 22(3):465–472. doi: 10.1016/j.copbio.2011.02.010 PubMedCrossRefGoogle Scholar
  157. Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant-DNA from bacteria and a yeast. Appl Environ Microbiol 59(8):2657–2665. doi: aem00037-0325PubMedPubMedCentralGoogle Scholar
  158. Terron-Gonzalez L, Medina C, Limon-Mortes MC, Santero E (2013) Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries. Sci Rep 3:1107. doi: 10.1038/srep01107 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Thomas L, Hodgson DA, Wentzel A, Nieselt K, Ellingsen TE, Moore J, Morrissey ER, Legaie R, Consortium S, Wohlleben W, Rodriguez-Garcia A, Martin JF, Burroughs NJ, Wellington EM, Smith MC (2012) Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture. Mol Cell Proteomics 11(2):M111.013797. doi: 10.1074/mcp.M111.013797 PubMedCrossRefGoogle Scholar
  160. Tong YJ, Charusanti P, Zhang LX, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4(9):1020–1029. doi: 10.1021/acssynbio.5b00038 PubMedCrossRefGoogle Scholar
  161. Troeschel S, Drepper T, Leggewie C, Streit W, Jaeger K-E (2010) Novel tools for the functional expression of metagenomic DNA. In: Streit WR, Daniel R (eds) Metagenomics, Methods in molecular biology, vol 668. Humana Press, New York, pp 117–139. doi: 10.1007/978-1-60761-823-2_8 CrossRefGoogle Scholar
  162. Tutino ML, Duilio A, Moretti MA, Sannia G, Marino G (2000) A rolling-circle plasmid from Psychrobacter sp. TA144: evidence for a novel rep subfamily. Biochem Biophys Res Commun 274(2):488–495. doi: 10.1006/bbrc.2000.3148 PubMedCrossRefGoogle Scholar
  163. Tutino ML, Duilio A, Parrilli E, Remaut E, Sannia G, Marino G (2001) A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5(4):257–264. doi: 10.1007/s007920100203 PubMedCrossRefGoogle Scholar
  164. Uchiyama T, Miyazaki K (2009) Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 20(6):616–622. doi: 10.1016/j.copbio.2009.09.010 PubMedCrossRefGoogle Scholar
  165. Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci U S A 104(25):10376–10381. doi: 10.1073/pnas.0700962104 PubMedPubMedCentralCrossRefGoogle Scholar
  166. van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28(7):1311–1333. doi: 10.1039/c1np00003a PubMedCrossRefGoogle Scholar
  167. van Wezel GP, McKenzie NL, Nodwell JR (2009) Chapter 5. Applying the genetics of secondary metabolism in model actinomycetes to the discovery of new antibiotics. Methods Enzymol 458:117–141. doi: 10.1016/S0076-6879(09)04805-8 PubMedCrossRefGoogle Scholar
  168. Vester JK, Glaring MA, Stougaard P (2015) Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles 19(1):17–29. doi: 10.1007/s00792-014-0704-3 PubMedCrossRefGoogle Scholar
  169. Waldvogel E, Herbig A, Battke F, Amin R, Nentwich M, Nieselt K, Ellingsen TE, Wentzel A, Hodgson DA, Wohlleben W, Mast Y (2011) The PII protein GlnK is a pleiotropic regulator for morphological differentiation and secondary metabolism in Streptomyces coelicolor. Appl Microbiol Biotechnol 92(6):1219–1236. doi: 10.1007/s00253 PubMedCrossRefGoogle Scholar
  170. Wang F, Hao J, Yang C, Sun M (2010) Cloning, expression, and identification of a novel extracellular cold-adapted alkaline protease gene of the marine bacterium strain YS-80-122. Appl Biochem Biotechnol 162(5):1497–1505. doi: 10.1007/s12010-010-8927-y PubMedCrossRefGoogle Scholar
  171. Wang GYS, Graziani E, Waters B, Pan W, Li X, McDermott J, Meurer G, Saxena G, Andersen RJ, Davies J (2000) Novel natural products from soil DNA libraries in a Streptomycete host. Organic Letters 2(16):2401–2404. doi:  10.1021/ol005860z
  172. Wang Y, Zhang YH (2009) Cell-free protein synthesis energized by slowly-metabolized maltodextrin. BMC Biotechnol 9:58. doi: 10.1186/1472-6750-9-58 PubMedPubMedCentralCrossRefGoogle Scholar
  173. Warburton P, Roberts AP, Allan E, Seville L, Lancaster H, Mullany P (2009) Characterization of tet(32) genes from the oral metagenome. Antimicrob Agents Chemother 53(1):273–276. doi: 10.1128/AAC.00788-08 PubMedCrossRefGoogle Scholar
  174. Warren RL, Freeman JD, Levesque RC, Smailus DE, Flibotte S, Holt RA (2008) Transcription of foreign DNA in Escherichia coli. Genome Res 18(11):1798–1805. doi: 10.1101/gr.080358.108 PubMedPubMedCentralCrossRefGoogle Scholar
  175. Wayne J, Xu SY (1997) Identification of a thermophilic plasmid origin and its cloning within a new Thermus-E. coli shuttle vector. Gene 195(2):321–328. doi: 10.1016/S0378-1119(97)00191-1 PubMedCrossRefGoogle Scholar
  176. Wentzel A, Bruheim P, Overby A, Jakobsen OM, Sletta H, Omara WA, Hodgson DA, Ellingsen TE (2012a) Optimized submerged batch fermentation strategy for systems scale studies of metabolic switching in Streptomyces coelicolor A3(2). BMC Syst Biol 6:59. doi: 10.1186/1752-0509-6-59 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Wentzel A, Sletta H, Consortium S, Ellingsen TE, Bruheim P (2012b) Intracellular metabolite pool changes in response to nutrient depletion induced metabolic switching in streptomyces coelicolor. Metabolites 2(1):178–194. doi: 10.3390/metabo2010178 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Wexler M, Bond PL, Richardson DJ, Johnston AW (2005) A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase. Environ Microbiol 7(12):1917–1926. doi: 10.1111/j.1462-2920.2005.00854.x PubMedCrossRefGoogle Scholar
  179. Wietzorrek A, Bibb M (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25(6):1181–1184. doi: 10.1046/j.1365-2958.1997.5421903.x PubMedCrossRefGoogle Scholar
  180. Wild J, Hradecna Z, Szybalski W (2002) Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. Genome Res 12:1434–1444. doi: 10.1101/gr.130502 PubMedPubMedCentralCrossRefGoogle Scholar
  181. Wilson MC, Mori T, Ruckert C, Uria AR, Helf MJ, Takada K, Gernert C, Steffens UA, Heycke N, Schmitt S, Rinke C, Helfrich EJ, Brachmann AO, Gurgui C, Wakimoto T, Kracht M, Crusemann M, Hentschel U, Abe I, Matsunaga S, Kalinowski J, Takeyama H, Piel J (2014) An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506(7486):58–62. doi: 10.1038/nature12959 PubMedCrossRefGoogle Scholar
  182. Wong S-L (1995) Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins. Curr Opin Biotechnol 6(5):517–522. doi: 10.1016/0958-1669(95)80085-9 PubMedCrossRefGoogle Scholar
  183. Wright LF, Hopwood DA (1976) Identification of the antibiotic determined by the SCP1 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol 95(1):96–106. doi: 10.1099/00221287-95-1-96 PubMedCrossRefGoogle Scholar
  184. Yoon V, Nodwell JR (2014) Activating secondary metabolism with stress and chemicals. J Ind Microbiol Biotechnol 41(2):415–424. doi: 10.1007/s10295-013-1387-y PubMedCrossRefGoogle Scholar
  185. Yoon MY, Lee KM, Yoon Y, Go J, Park Y, Cho YJ, Tannock GW, Yoon SS (2013) Functional screening of a metagenomic library reveals operons responsible for enhanced intestinal colonization by gut commensal microbes. Appl Environ Microbiol 79(12):3829–3838. doi: 10.1128/AEM.00581-13 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Zemella A, Thoring L, Hoffmeister C, Kubick S (2015) Cell-free protein synthesis: pros and cons of prokaryotic and eukaryotic systems. Chembiochem 16(17):2420–2431. doi: 10.1002/cbic.201500340 PubMedPubMedCentralCrossRefGoogle Scholar
  187. Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci U S A 99(24):15681–15686. doi: 10.1073/pnas.252630999 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. Chembiochem 10(4):625–633. doi: 10.1002/cbic.200800389 PubMedCrossRefGoogle Scholar
  189. Zhang JW, Zeng RY (2008) Molecular cloning and expression of a cold-adapted lipase gene from an Antarctic deep sea psychrotrophic bacterium Pseudomonas sp 7323. Mar Biotechnol 10(5):612–621. doi: 10.1007/s10126-008-9099-4 PubMedCrossRefGoogle Scholar
  190. Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J, Chisholm SW, Church GM (2006) Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol 24(6):680–686. doi: 10.1038/nbt1214 PubMedCrossRefGoogle Scholar
  191. Zhang G, Li Y, Fang L, Pfeifer BA (2015) Tailoring pathway modularity in the biosynthesis of erythromycin analogs heterologously engineered in E. coli. Sci Adv 1(4):e1500077. doi: 10.1126/sciadv.1500077 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Zhou JZ, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322. doi: 0099-2240/96/$04.0010PubMedPubMedCentralGoogle Scholar
  193. Zhou Y, Asahara H, Gaucher EA, Chong S (2012) Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components. Nucleic Acids Res 40(16):7932–7945. doi: 10.1093/nar/gks568 PubMedPubMedCentralCrossRefGoogle Scholar
  194. Zhu H, Sandiford SK, van Wezel GP (2014) Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol 41(2):371–386. doi: 10.1007/s10295-013-1309-z PubMedCrossRefGoogle Scholar
  195. Zobel S, Kumpfmüller J, Süssmuth R, Schweder T (2015) Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Appl Microbiol Biotechnol 99(2):681–691. doi: 10.1007/s00253-014-6199-0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biotechnology and NanomedicineSINTEF Materials and ChemistryTrondheimNorway
  2. 2.Department of Biotechnology and Food SciencePhotoSynLab, Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations