Dynamics of Coated Microbubbles in Ultrasound

  • Valeria Garbin


The stability and dynamics of microbubbles coated with an interfacial layer of adsorbed material, ranging from phospholipids, to proteins and nanoparticles, are central to food products, biomedical imaging applications, and controlled release. The dynamics of coated microbubbles in ultrasound fields are of particular relevance to food production and biomedical imaging. High-speed imaging has proven to be an invaluable tool to reveal micromechanical phenomena of the coating during ultrasound-driven microbubble dynamics, so as to gain a fundamental understanding of the factors affecting microbubble durability and performance. This Chapter includes an introduction to the basic concepts of microbubble stability (Sect. 1), and to the dynamics of coated microbubbles in ultrasound (Sect. 2). An overview of recent research advances is then provided, focusing on the following topics: Dynamics of biomedical microbubbles in ultrasound studied by combined optical trapping and ultra-high speed imaging (Sect. 3); Buckling and expulsion of coating material from ultrasound-driven microbubbles (Sect. 4); Shape oscillations of coated bubbles (Sect. 5).



The writing of this book chapter, and part of the work by the Author described therein, was supported by the European Research Council, Starting Grant No. 639221.


  1. 1.
    M. Lee, E.Y. Lee, D. Lee, B.J. Park, Stabilization and fabrication of microbubbles: applications for medical purposes and functional materials. Soft Matter 11, 2067–2079 (2015)CrossRefGoogle Scholar
  2. 2.
    P.S. Epstein, M.S. Plesset, On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys. 18, 1505–1509 (1950)CrossRefGoogle Scholar
  3. 3.
    P. de Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2003)zbMATHGoogle Scholar
  4. 4.
    P.B. Duncan, D. Needham, Test of the Epstein-Plesset model for gas microparticle dissolution in aqueous media: effect of surface tension and gas undersaturation in solution. Langmuir 20, 2567–2578 (2004)CrossRefGoogle Scholar
  5. 5.
    M.A. Borden, M.L. Longo, Dissolution behavior of lipid monolayer-coated, air-filled microbubbles: effect of lipid hydrophobic chain length. Langmuir 18, 9225–9233 (2002)CrossRefGoogle Scholar
  6. 6.
    G. Pu, M.A. Borden, M.L. Longo, Collapse and shedding transitions in binary lipid monolayers coating microbubbles. Langmuir 22, 2993–2999 (2006)CrossRefGoogle Scholar
  7. 7.
    J. Hanwright, J. Zhou, G.M. Evans, K.P. Galvin, Influence of surfactant on gas bubble stability. Langmuir 21, 4912–4920 (2005)CrossRefGoogle Scholar
  8. 8.
    A. Katiyar, K. Sarkar, P. Jain, Effects of encapsulation elasticity on the stability of an encapsulated microbubble. J. Colloid Interf. Sci. 336, 519–525 (2009)CrossRefGoogle Scholar
  9. 9.
    W. Kloek, T. van Vliet, M. Meinders, Effect of bulk and interfacial rheological properties on bubble dissolution. J. Colloid Interf. Sci. 237, 158–166 (2001)CrossRefGoogle Scholar
  10. 10.
    B.S. Murray, R. Ettelaie, Foam stability: proteins and nanoparticles. Curr. Opin. Colloid Interface Sci. 9, 314–320 (2004)CrossRefGoogle Scholar
  11. 11.
    A. Stocco, E. Rio, B.P. Binks, D. Langevin, Aqueous foams stabilized solely by particles. Soft Matter 7, 1260–1267 (2011)CrossRefGoogle Scholar
  12. 12.
    K. Soetanto, M. Chan, M. Okujima, Change in size and number of sodium laurate microbubbles with time in saline at different air concentrations. Jpn. J. Appl. Phys. 36, 3238 (1997)CrossRefGoogle Scholar
  13. 13.
    E. Dickinson, R. Ettelaie, B.S. Murray, Z. Du, Kinetics of disproportionation of air bubbles beneath a planar air–water interface stabilized by food proteins. J. Colloid Interface Sci. 252, 202–213 (2002)CrossRefGoogle Scholar
  14. 14.
    A.R. Cox, F. Cagnol, A.B. Russell, M.J. Izzard, Surface properties of class II hydrophobins from Trichoderma reesei and influence on bubble stability. Langmuir 23, 7995–8002 (2007)CrossRefGoogle Scholar
  15. 15.
    B.S. Murray, K. Durga, A. Yusoff, S.D. Stoyanov, Stabilization of foams and emulsions by mixtures of surface active food-grade particles and proteins. Food Hydrocolloids 25, 627–638 (2011)CrossRefGoogle Scholar
  16. 16.
    M.A. Borden, G. Pu, G.J. Runner, M.L. Longo, Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles. Colloids Surf. B Biointerfaces 35, 209–223 (2004)CrossRefGoogle Scholar
  17. 17.
    Z. Du, M.P. Bilbao-Montoya, B.P. Binks, E. Dickinson, R. Ettelaie, B.S. Murray, Outstanding stability of particle-stabilized bubbles. Langmuir 19, 3106–3108 (2003)CrossRefGoogle Scholar
  18. 18.
    B.P. Binks, Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 21–41 (2002)CrossRefGoogle Scholar
  19. 19.
    V. Garbin, Colloidal particles: surfactants with a difference. Phys. Today 66, 68 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Lam, K.P. Velikov, O.D. Velev, Pickering stabilization of foams and emulsions with particles of biological origin. Curr. Opin. Colloid Interface Sci. 19(5), 490–500 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Gao, C.U. Chan, Q. Gu, X. Lin, W. Zhang, D.C.L. Yeo, A.M. Alsema, M. Arora, M.S.K. Chong, P. Shi, C.D. Ohl, C. Xu, Controlled nanoparticle release from stable magnetic microbubble oscillations. NPG Asia Mater 8, e260 (2016)CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, M.C. Allen, R. Zhao, D.D. Deheyn, S.H. Behrens, J.C. Meredith, Capillary foams: stabilization and functionalization of porous liquids and solids. Langmuir 31, 2669–2676 (2015)CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, J. Wu, H. Wang, J.C. Meredith, S.H. Behrens, Stabilization of liquid foams through the synergistic action of particles and an immiscible liquid. Angew. Chem. 126, 13603–13607 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Abkarian, A.B. Subramaniam, S.H. Kim, R.J. Larsen, S.M. Yang, H.A. Stone, Dissolution arrest and stability of particle-covered bubbles. Phys. Rev. Lett. 99, 188301 (2007)CrossRefGoogle Scholar
  25. 25.
    M.H. Lee, V. Prasad, D. Lee, Microfluidic fabrication of stable nanoparticle-shelled bubbles. Langmuir 26, 2227–2230 (2010)CrossRefGoogle Scholar
  26. 26.
    A. Prosperetti, Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. J. Acoust. Soc. Am. 61, 17 (1977)CrossRefGoogle Scholar
  27. 27.
    J.R.B.B. Goldberg, F. Forsberg, Ultrasound Contrast Agents: Basic Principles and Clinical Applications, 2nd edn. (Dunitz, London, 2001)Google Scholar
  28. 28.
    M.S. Plesset, A. Prosperetti, Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145–185 (1977)CrossRefzbMATHGoogle Scholar
  29. 29.
    T.G. Leighton, The Acoustic Bubble (Academic Press, USA, 1994)Google Scholar
  30. 30.
    C.C. Church, The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J. Acoust. Soc. Am. 97, 1510–1521 (1995)CrossRefGoogle Scholar
  31. 31.
    P.J.A. Frinking, N. de Jong, Acoustic modeling of shell-encapsulated gas bubbles. Ultrasound Med. Biol. 24, 523–533 (1998)CrossRefGoogle Scholar
  32. 32.
    D.B. Khismatullin, A. Nadim, Radial oscillations of encapsulated microbubbles in viscoelastic liquids. Phys. Fluids 14, 3534–3557 (2002)CrossRefzbMATHGoogle Scholar
  33. 33.
    P. Marmottant, S. van der Meer, M. Emmer, M. Versluis, N. de Jong, S. Hilgenfeldt, D. Lohse, A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J. Acoust. Soc. Am. 118, 3499–3505 (2005)CrossRefGoogle Scholar
  34. 34.
    K.Y.C. Lee, Collapse mechanisms of langmuir monolayers. Annu. Rev. Phys. Chem. 59(1), 771–791 (2008)CrossRefGoogle Scholar
  35. 35.
    N. de Jong, A. Bouakaz, P. Frinking, Basic acoustic properties of microbubbles. Echocardiography 19, 229–240 (2002)CrossRefGoogle Scholar
  36. 36.
    J. Chomas, P. Dayton, D. May, J. Allen, A. Klibanov, K. Ferrara, Optical observation of contrast agent destruction. Appl. Phys. Lett. 77, 1056–1058 (2000)CrossRefGoogle Scholar
  37. 37.
    N. de Jong, P. Frinking, A. Bouakaz, M. Goorden, T. Schourmans, X. Jingping, F. Mastik, Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera. Ultrasound Med. Biol. 26, 487–492 (2000)CrossRefGoogle Scholar
  38. 38.
    N. Kudo, T. Miyaoka, K. Kuribayashi, K. Yamamoto, Study of the mechanism of fragmentation of a microbubble exposed to ultrasound using a high-speed observation system. J. Acoust. Soc. Am. 108, 2547 (2000)CrossRefGoogle Scholar
  39. 39.
    K. Tachibana, T. Uchida, K. Ogawa, N. Yamashita, K. Tamura, Induction of cell-membrane porosity by ultrasound. Lancet 353, 1409 (1999)CrossRefGoogle Scholar
  40. 40.
    P. Marmottant, S. Hilgenfeldt, Controlled vesicle deformation and lysis by single oscillating bubble. Nature 243, 153–156 (2003)CrossRefGoogle Scholar
  41. 41.
    P.A. Prentice, M.P. MacDonald, T.G. Frank, A. Cuschieri, G.C. Spalding, W. Sibbett, P.A. Campbell, K. Dholakia, Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays. Opt. Express 12, 593–600 (2004)CrossRefGoogle Scholar
  42. 42.
    V. Garbin, D. Cojoc, E. Ferrari, R.Z. Proietti, S. Cabrini, E. Di Fabrizio, Optical micromanipulation using Laguerre-Gaussian beams. Jpn. J. Appl. Phys. 44, 5772–5775 (2005)CrossRefGoogle Scholar
  43. 43.
    P.H. Jones, E. Stride, N. Saffari, Trapping and manipulation of microscopic bubbles with a scanning optical tweezer. Appl. Phys. Lett. 89, 081113 (2006)CrossRefGoogle Scholar
  44. 44.
    P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, P. Campbell, Membrane disruption by optically controlled microbubble cavitation. Nat. Phys. 1, 107–110 (2005)CrossRefGoogle Scholar
  45. 45.
    V. Garbin, D. Cojoc, E. Ferrari, E. Di Fabrizio, M.L.J. Overvelde, S.M. van der Meer, N. de Jong, D. Lohse, M. Versluis, Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging. Appl. Phys. Lett. 90, 114103 (2007)CrossRefGoogle Scholar
  46. 46.
    A. Ashkin, J. Dziedzic, J. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986)CrossRefGoogle Scholar
  47. 47.
    A. Ashkin, J. Dziedzic, T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987)CrossRefGoogle Scholar
  48. 48.
    P. Jones, O. Maragó, G. Volpe, Optical Tweezers: Principles and Applications (Cambridge University Press, Cambridge, 2015)Google Scholar
  49. 49.
    K. Gahagan, G. Swartzlander, Optical vortex trapping of particles. Opt. Lett. 21, 827 (1996)CrossRefGoogle Scholar
  50. 50.
    M. Overvelde, V. Garbin, J. Sijl, B. Dollet, N. de Jong, D. Lohse, M. Versluis, Nonlinear shell behavior of phospholipid-coated microbubbles. Ultrasound Med. Biol. 36, 2080–2092 (2010)CrossRefGoogle Scholar
  51. 51.
    J. Sijl, B. Dollet, M. Overvelde, V. Garbin, T. Rozendal, N. de Jong, D. Lohse, M. Versluis, Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles. J. Acoust. Soc. Am. 128, 3239–3252 (2010)CrossRefGoogle Scholar
  52. 52.
    V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, M. Versluis, History force on coated microbubbles propelled by ultrasound. Phys. Fluids 21, 092003 (2009)CrossRefzbMATHGoogle Scholar
  53. 53.
    Y. Luan, G. Lajoinie, E. Gelderblom, I. Skachkov, A.F. van der Steen, H.J. Vos, M. Versluis, N.D. Jong, Lipid shedding from single oscillating microbubbles. Ultrasound Med. Biol. 40, 1834–1846 (2014)CrossRefGoogle Scholar
  54. 54.
    V. Poulichet, V. Garbin, Ultrafast desorption of colloidal particles from fluid interfaces. Proc. Nat. Acad. Sci. 112, 5932–5937 (2015)CrossRefGoogle Scholar
  55. 55.
    J. Sijl, M. Overvelde, B. Dollet, V. Garbin, N. de Jong, D. Lohse, M. Versluis, Compression-only, behavior: a second-order nonlinear response of ultrasound contrast agent microbubbles. J. Acoust. Soc. Am. 129, 1729–1739 (2011)CrossRefGoogle Scholar
  56. 56.
    E. Stride, K. Pancholi, M. Edirisinghe, S. Samarasinghe, Increasing the nonlinear character of microbubble oscillations at low acoustic pressures. J. Royal Soc. Interface 5, 807–811 (2008)CrossRefGoogle Scholar
  57. 57.
    X. Zhao, P.A. Quinto-Su, C.D. Ohl, Dynamics of magnetic bubbles in acoustic and magnetic fields. Phys. Rev. Lett. 102, 024501 (2009)CrossRefGoogle Scholar
  58. 58.
    H. Mulvana, R.J. Eckersley, M.X. Tang, Q. Pankhurst, E. Stride, Theoretical and experimental characterisation of magnetic microbubbles. Ultrasound Med. Biol. 38, 864–875 (2012)CrossRefGoogle Scholar
  59. 59.
    S.S. Datta, H.C. Shum, D.A. Weitz, Controlled buckling and crumpling of nanoparticle-coated droplets. Langmuir 26, 18612–18616 (2010)CrossRefGoogle Scholar
  60. 60.
    S. Razavi, K.D. Cao, B. Lin, K.Y.C. Lee, R.S. Tu, I. Kretzschmar, Collapse of particle-laden interfaces under compression: buckling vs particle expulsion. Langmuir 31, 7764–7775 (2015)CrossRefGoogle Scholar
  61. 61.
    V. Garbin, J.C. Crocker, K.J. Stebe, Forced desorption of nanoparticles from an oil-water interface. Langmuir 28(3), 1663–1667 (2012)CrossRefGoogle Scholar
  62. 62.
    A. Francescutto, R. Nabergoj, Pulsation amplitude threshold for surface waves on oscillating bubbles. Acustica 41(3), 215–220 (1978)Google Scholar
  63. 63.
    H. Lamb, Hydrodynamics, 6th edn. (Cambridge University Press, Cambridge, 1932)Google Scholar
  64. 64.
    E.H. Trinh, D.B. Thiessen, R.G. Holt, Driven and freely decaying nonlinear shape oscillations of drops and bubbles immersed in a liquid: experimental results. J. Fluid Mech. 364, 253–272 (1998)CrossRefzbMATHGoogle Scholar
  65. 65.
    H. Vos, B. Dollet, J. Bosch, M. Versluis, N. de Jong, nonspherical vibrations of microbubbles in contact with a wall—a pilot study at low mechanical index. Ultrasound Med. Biol. 34, 685–688 (2008)CrossRefGoogle Scholar
  66. 66.
    S. Zhao, K.W. Ferrara, P.A. Dayton, Asymmetric oscillation of adherent targeted ultrasound contrast agents. Appl. Phys. Lett. 87, 134103 (2005)CrossRefGoogle Scholar
  67. 67.
    B. Dollet, S.M. van der Meer, V. Garbin, N. de Jong, D. Lohse, M. Versluis, Nonspherical oscillations of ultrasound contrast agent microbubbles. Ultrasound Med. Biol. 34, 1465–1473 (2008)CrossRefGoogle Scholar
  68. 68.
    V. Poulichet, A. Huerre, V. Garbin, Shape oscillations of particle-coated bubbles and directional particle expulsion. Soft Matter 13, 125–133 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringImperial College LondonLondonUK

Personalised recommendations