Real-Time Hard X-ray Imaging

  • Alexander Rack
  • Margie Olbinado
  • Mario Scheel
  • Benjamin Jodar
  • John Morse


Using hard X-rays for high-speed and ultra high-speed imaging has enormous potential to visualize the interior of opaque systems as they change with time. Exposure times below one nanosecond for ultra high-speed imaging are accessible when synchrotron light sources are employed and this provides a non-destructive method of in-motion radiography. The polychromatic radiation of insertion devices in combination with X-ray phase contrast has proven to be suited for acquisition rates up to the MHz range. This chapter outlines the basic principles of indirect hard X-ray imaging detectors for real-time imaging, and other detection schemes and sources of radiation are briefly discussed. The potential of using hard X-rays for high-speed imaging is demonstrated with application examples from soft matter physics and materials processing.

Supplementary material

421713_1_En_10_MOESM1_ESM.avi (23.4 mb)
Dynamics in an aqueous foam obtained by means of high-speed phase contrast radioscopy. The collapse of two cell walls can be followed as well as the rearrangement of the pores in the immediate neighborhood (AVI 23926 kb)
421713_1_En_10_MOESM2_ESM.avi (36.6 mb)
Laser processing of a polystyrene foam: Interaction of an isolated laser irradiation (800 mJ, 20 ns pulse) with the aluminium-coated surface of a polystyrene foam is seen. The frame acquisition rate: 1.4 MHz, the integration time of the camera: 200 ns. (Contrast in the movie is dominated by X-ray phase contrast.) (AVI 37507 kb)


  1. 1.
    H.E. Johns, J.R. Cunningham, The Physics of Radiology, 4th edn. (Charles C Thomas, Springfield, 1983)Google Scholar
  2. 2.
    A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988)zbMATHGoogle Scholar
  3. 3.
    A. Koch, C. Raven, P. Spanne, A. Snigirev, X-ray imaging with submicrometer resolution employing transparent luminescent screens. J. Opt. Soc. Am. 15, 1940–1951 (1998)CrossRefGoogle Scholar
  4. 4.
    A. Rack, F. Garcia-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, S. Zabler, On the possibilities of hard X-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation. J. X-ray Sci. Tech. 18, 429–441 (2010)Google Scholar
  5. 5.
    M.P. Olbinado, X. Just, J.-L. Gelet, P. Lhuissier, M. Scheel, P. Vagovic, T. Sato, R. Graceffa, J. Morse, A. Rack, MHz frame rate hard X-ray phase-contrast imaging using synchrotron radiation. Opt. Expr. 25, 13857–13871 (2017)Google Scholar
  6. 6.
    A. Rack, M. Scheel, A.N. Danilewsky, Real-time direct and diffraction X-ray imaging of irregular silicon wafer breakage. IUCrJ 3, 108–114 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M.L. Qi, K. Fezzaa, S.N. Luo, W. Chen, High speed synchrotron X-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading. Rev. Sci. Instrum. 84, 025102 (2013)CrossRefGoogle Scholar
  8. 8.
    W. Hartmann, G. Markewitz, U. Rettenmaier, H.J. Queisser, High resolution direct-display X-ray topography. Appl. Phys. Lett. 27, 308–309 (1975)CrossRefGoogle Scholar
  9. 9.
    A. Koch, Lens coupled scintillating screen-CCD X-ray area detector with a high quantum efficiency, Nucl. Instrum. Meth. Phys. Res. A 348, 654–658 (1994)Google Scholar
  10. 10.
    S.N. Luo, B.J. Jensen, D.E. Hooks, K. Fezzaa, K.J. Ramos, J.D. Yeager, K. Kwiatkowski, T. Shimada, Gas gun shock experiments with single-pulse X-ray phase contrast imaging and diffraction at the Advanced Photon Source. Rev. Sci. Instrum. 83, 073903 (2012)CrossRefGoogle Scholar
  11. 11.
    H.T. Philipp, M.W. Tate, P. Purohit, K.S. Shanks, J.T. Weiss, S.M. Gruner, High-speed X-ray imaging pixel array detector for synchrotron bunch isolation. J. Synchrotron Rad. 23, 395–403 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Schwandt, E. Fretwurst, R. Klanner, J. Zhang, Design of the AGIPD sensor for the European XFEL. J. Instrum. 8, C01015 (2013)CrossRefGoogle Scholar
  13. 13.
    P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, M. Schlenker, Phase objects in synchrotron radiation hard X-ray imaging. J. phys. D Appl. Phys. 29, 133–146 (1996)CrossRefGoogle Scholar
  14. 14.
    H. Wiedemann, Synchrotron Radiation (Springer, Berlin, 2002)Google Scholar
  15. 15.
    A. Rack, M. Scheel, L. Hardy, C. Curfs, A. Bonnin, H. Reichert, Exploiting coherence for real-time studies by single-bunch imaging. J. Synchrotron Rad. 21, 815–818 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, M. Schlenker, Optimization of phase contrast imaging using hard x rays. Rev. Sci. Instrum. 76, 073705 (2005)CrossRefGoogle Scholar
  17. 17.
    E. Maire, P.J. Withers, Quantitative X-ray tomography. Internat, Mater. Rev. 59, 1–43 (2014)Google Scholar
  18. 18.
    E. Maire, C. Le Bourlot, J. Adrien, A. Mortensen, R. Mokso, 20 Hz X-ray tomography during an in situ tensile test. Int. J. Fracture 200, 3–12 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Dittmann, A. Eggert, M. Lambertus, J. Dombrowski, A. Rack, S. Zabler, Finding robust descriptive features for the characterization of the coarsening dynamics of three dimensional whey protein foams. J. Coll. Interface Sci. 467, 148–157 (2016)CrossRefGoogle Scholar
  20. 20.
    A. Meagher, F. García-Moreno, J. Banhart, A. Mughal, S. Hutzler, An experimental study of columnar crystals using monodisperse microbubbles. Coll. Surfaces A 473, 55–59 (2015)CrossRefGoogle Scholar
  21. 21.
    R. Acharya, J.A. Sharon, A. Staroselsky, Prediction of microstructure in laser powder bed fusion process. Acta Mater. 124, 360–371 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Besner, M. Meunier, Chapter 7: Laser precision microfabrication, in Springer Series in Materials Science, vol. 135 (Springer, Heidelberg, 2010), pp. 163–187CrossRefGoogle Scholar
  23. 23.
    Z. Wang, C.L. Morris, J.S. Kapustinsky, K. Kwiatkowski, S.-N. Luo, Towards hard X-ray imaging at GHz frame rate. Rev. Sci. Instrum. 83, 10E510 (2012)CrossRefGoogle Scholar
  24. 24.
    T.G. Etoh, A.Q. Nguyen, Y. Kamakura, K. Shimonomura, T.Y. Le, N. Mori, The theoretical highest frame rate of silicon image sensors. Sensors 17, 483 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alexander Rack
    • 1
  • Margie Olbinado
    • 1
  • Mario Scheel
    • 2
  • Benjamin Jodar
    • 3
  • John Morse
    • 1
  1. 1.European Synchrotron Radiation Facility (ESRF)GrenobleFrance
  2. 2.Synchrotron SoleilGif-Sur-YvetteFrance
  3. 3.UMR 6251—CNRS/Université de Rennes 1RennesFrance

Personalised recommendations