Chemical Graph Transformation with Stereo-Information

  • Jakob Lykke Andersen
  • Christoph Flamm
  • Daniel Merkle
  • Peter F. Stadler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10373)


Double Pushout graph transformation naturally facilitates the modelling of chemical reactions: labelled undirected graphs model molecules and direct derivations model chemical reactions. However, the most straightforward modelling approach ignores the relative placement of atoms and their neighbours in space. Stereoisomers of chemical compounds thus cannot be distinguished, even though their chemical activity may differ substantially. In this contribution we propose an extended chemical graph transformation system with attributes that encode information about local geometry. The modelling approach is based on the so-called “ordered list method”, where an order is imposed on the set of incident edges of each vertex, and permutation groups determine equivalence classes of orderings that correspond to the same local spatial embedding. This method has previously been used in the context of graph transformation, but we here propose a framework that also allows for partially specified stereoinformation. While there are several stereochemical configurations to be considered, we focus here on the tetrahedral molecular shape, and suggest general principles for how to treat all other chemically relevant local geometries. We illustrate our framework using several chemical examples, including the enumeration of stereoisomers of carbohydrates and the stereospecific reaction for the aconitase enzyme in the citirc acid cycle.


Double Pushout Chemical graph transformation system Stereochemistry 



This work is supported by the Danish Council for Independent Research, Natural Sciences, the COST Action CM1304 “Emergence and Evolution of Complex Chemical Systems”, and the ELSI Origins Network (EON), which is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

Supplementary material


  1. 1.
    Akutsu, T.: A new method of computer representation of stereochemistry. Transforming a stereochemical structure into a graph. J. Chem. Inf. Comput. Sci. 31, 414–417 (1991)CrossRefGoogle Scholar
  2. 2.
    Andersen, J.L.: MedØlDatschgerl (MØD) (2016).
  3. 3.
    Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: Inferring chemical reaction patterns using rule composition in graph grammars. J. Syst. Chem. 4(1), 4 (2013)CrossRefGoogle Scholar
  4. 4.
    Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: Generic strategies for chemical space exploration. Int. J. Comput. Biol. Drug Des. 7(2/3), 225–258 (2014).
  5. 5.
    Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: A software package for chemically inspired graph transformation. In: Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761, pp. 73–88. Springer, Cham (2016). doi: 10.1007/978-3-319-40530-8_5 CrossRefGoogle Scholar
  6. 6.
    Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J. Chem. Inf. Comput. Sci. 43, 1085–1093 (2003)CrossRefGoogle Scholar
  7. 7.
    Cordella, L., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367 (2004)CrossRefGoogle Scholar
  8. 8.
    Cross, L.C., Klyne, W.: Rules for the nomenclature of organic chemistry: section E: stereochemistry. Pure Appl. Chem. 45, 11–30 (1976)Google Scholar
  9. 9.
    Ehrig, H., Ehrig, K., Prange, U., Taenthzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Berlin (2006)zbMATHGoogle Scholar
  10. 10.
    Ehrig, K., Heckel, R., Lajios, G.: Molecular analysis of metabolic pathway with graph transformation. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 107–121. Springer, Heidelberg (2006). doi: 10.1007/11841883_9 CrossRefGoogle Scholar
  11. 11.
    Faulon, J.L., Visco Jr., D., Roe, D.: Enumerating Molecules, Reviews in Computational Chemistry, vol. 21, pp. 209–286. Wiley, Hoboken (2005)CrossRefGoogle Scholar
  12. 12.
    Flack, H.D.: Louis Pasteur’s discovery of molecular chirality and spontaneous resolution in 1848, together with a complete review of his crystallographic and chemical work. Acta Crystallogr. Sect. A 65, 371–389 (2009)CrossRefGoogle Scholar
  13. 13.
    Fontana, W., Buss, L.W.: “The arrival of the fittest”: toward a theory of biological organization. Bull. Math. Biol. 56, 1–64 (1994)zbMATHGoogle Scholar
  14. 14.
    Fontana, W., Buss, L.W.: What would be conserved “if the tape were played twice”. Proc. Natl. Acad. Sci. USA 91, 757–761 (1994)CrossRefGoogle Scholar
  15. 15.
    Gillespie, R.: Fifty years of the VSEPR model. Coord. Chem. Rev. 252, 1315–1327 (2008)CrossRefGoogle Scholar
  16. 16.
    Kerber, A., Laue, R., Meringer, M., Rücker, C., Schymanski, E.: Mathematical Chemistry and Chemoinformatics. De Gruyter (2013)Google Scholar
  17. 17.
    Kreowski, H.J., Kuske, S.: Graph multiset transformation: a new framework for massively parallel computation inspired by DNA computing. Nat. Comput. 10(2), 961–986 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Attributed graph transformation with node type inheritance. Theor. Comput. Sci. 376(3), 139–163 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lewis, G.N.: The atom and the molecule. J. Am. Chem. Soc. 38, 762–785 (1916)CrossRefGoogle Scholar
  20. 20.
    Petrarca, A.E., Lynch, M.F., Rush, J.E.: A method for generating unique computer structural representation of stereoisomers. J. Chem. Doc. 7, 154–165 (1967)CrossRefGoogle Scholar
  21. 21.
    Pólya, G.: Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Mathematica 68(1), 145–254 (1937)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pólya, G., Read, R.: Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds. Springer, New York (1987)CrossRefGoogle Scholar
  23. 23.
    Redfield, J.: The theory of group-reduced distributions. Am. J. Math. 49(3), 433–455 (1927)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rosselló, F., Valiente, G.: Graph transformation in molecular biology. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 116–133. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-31847-7_7 CrossRefGoogle Scholar
  25. 25.
    Satoh, H., Koshino, H., Funatsu, K., Nakata, T.: Novel canonical coding method for representation of three-dimensional structures. J. Chem. Inf. Comput. Sci. 40, 622–630 (2000)CrossRefGoogle Scholar
  26. 26.
    Taentzer, G.: AGG: a graph transformation environment for modeling and validation of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) Applications of Graph Transformations with Industrial Relevance: Second International Workshop, AGTIVE 2003. LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Model. 28, 31–36 (1988)CrossRefGoogle Scholar
  28. 28.
    Wipke, W.T., Dyott, T.M.: Simulation and evaluation of chemical synthesis-computer representation and manipulation of stereochemistry. J. Am. Chem. Soc. 96, 4825–4834 (1974)CrossRefGoogle Scholar
  29. 29.
    Yadav, M.K., Kelley, B.P., Silverman, S.M.: The potential of a chemical graph transformation system. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 83–95. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30203-2_8 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdenseDenmark
  2. 2.Institute for Theoretical ChemistryUniversity of ViennaWienAustria
  3. 3.Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for BioinformaticsUniversity of LeipzigLeipzigGermany
  4. 4.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  5. 5.Fraunhofer Institute for Cell Therapy and ImmunologyLeipzigGermany
  6. 6.Center for Non-coding RNA in Technology and HealthUniversity of CopenhagenFrederiksbergDenmark
  7. 7.Santa Fe InstituteSanta FeUSA
  8. 8.Research Network Chemistry Meets MicrobiologyUniversity of ViennaWienAustria
  9. 9.Tokyo Institute of TechnologyEarth-Life Science InstituteTokyoJapan

Personalised recommendations