Advertisement

Randomized Kinodynamic Planning for Cable-Suspended Parallel Robots

  • Ricard BordalbaEmail author
  • Josep M. Porta
  • Lluís Ros
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 53)

Abstract

This paper proposes the use of a randomized kinodynamic planning technique to synthesize dynamic motions for cable-suspended parallel robots. Given two mechanical states of the robot, both with a prescribed position and velocity, the method attempts to connect them by a collision-free trajectory that respects the joint and force limits of the actuators, keeps the cables in tension, and takes the robot dynamics into account. The method is based on the construction of a bidirectional rapidly-exploring random tree over the state space. Remarkably, the technique can be used to cross forward singularities of the robot in a predictable manner, which extends the motion capabilities beyond those demonstrated in previous work. The paper describes experiments that show the performance of the method in point-to-point operations with specific cable-driven robots, but the overall strategy remains applicable to other mechanism designs.

References

  1. 1.
    Albus, J., Bostelman, R.V., Dagalakis, N.: The NIST Robocrane. J. Rob. Syst. 10(5), 709–724 (1993). doi: 10.1002/rob.4620100509 CrossRefGoogle Scholar
  2. 2.
    Bamdad, M.: Time-energy optimal trajectory planning of cable-suspended manipulators. In: Bruckmann, T., Pott, A. (eds.) Cable-Driven Parallel Robots, vol. 12, pp. 41–51. (2013). http://doi.org/10.1109/ICRoM.2014.6990907
  3. 3.
    Barrette, G., Gosselin, C.: Determination of the dynamic workspace of cable-driven planar parallel mechanisms. Trans. ASME-R-J. Mech. Des. 127(2), 242–248 (2005). doi: 10.1115/1.1830045 CrossRefGoogle Scholar
  4. 4.
    Bohigas, O., Manubens, M., Ros, L.: Singularities of non-redundant manipulators: a short account and a method for their computation in the planar case. Mech. Mach. Theory 68, 1–17 (2013). doi: 10.1016/j.mechmachtheory.2013.03.001 CrossRefGoogle Scholar
  5. 5.
    Bohigas, O., Manubens, M., Ros, L.: Planning wrench-feasiblemotions for cable-driven hexapods. IEEE Trans. Rob. 32(2), 442–451 (2016). doi: 10.1109/TRO.2016.2529640 CrossRefGoogle Scholar
  6. 6.
    Bohigas, O., Manubens, M., Ros, L.: Singularities of Robot Mechanisms: Numerical Computation and Avoidance Path Planning. Springer, Switzerland (2016). http://www.springer.com/us/book/9783319329208
  7. 7.
    Bordalba, R., Ros, L., Porta, J.M.: Kinodynamic planning on constraint manifolds. Institut de Robòtica i Infomàtica. CSIC-UPC, Technical report (2017)Google Scholar
  8. 8.
    Cunningham, D., Asada, H.H.: The Winch-bot: a cable-suspended, under-actuated robot utilizing parametric self-excitation. In: IEEE International Conference on Robotics and Automation, pp. 1844–1850 (2009). http://doi.org/10.1109/ROBOT.2009.5152378
  9. 9.
    Gosselin, C.: Cable-driven parallel mechanisms: state of the art and perspectives. Mech. Eng. Rev. 1(1), DSM0004 (2014). http://doi.org/10.1299/mer.2014dsm0004
  10. 10.
    Gosselin, C., Foucault, S.: Dynamic point-to-point trajectory planning of a two-DOF cable-suspended parallel robot. IEEE Trans. Rob. 30(3), 728–736 (2014). http://doi.org/10.1109/TRO.2013.2292451
  11. 11.
    Gosselin, C., Ren, P., Foucault, S.: Dynamic trajectory planning of a two-DOF cable-suspended parallel robot. In: IEEE International Conference on Robotics and Automation, pp. 1476–1481 (2012). http://doi.org/10.1109/ICRA.2012.6224683
  12. 12.
    Greenwood, D.T.: Advanced Dynamics. Cambridge University Press, Cambridge (2006). http://doi.org/10.1017/CBO9780511800207
  13. 13.
    Hauser, K., Zhou, Y.: Asymptotically optimal planning by feasible kinodynamic planning in a state-cost space. IEEE Trans. Rob. 32(6), 1431–1443 (2016). http://doi.org/10.1109/TRO.2016.2602363
  14. 14.
    Jiang, X., Gosselin, C.: Dynamic point-to-point trajectory planning of a three-DOF cable-suspended parallel robot. IEEE Trans. Rob. 32(6), 1550–1557 (2016). http://doi.org/10.1109/TRO.2016.2597315
  15. 15.
    Jiménez, P., Thomas, F., Torras, C.: 3D collision detection: a survey. Comput. Graph. 25(2), 269–285 (2001). doi: 10.1016/S0097-8493(00)00130–8
  16. 16.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, New York (2006). http://planning.cs.uiuc.edu/
  17. 17.
    LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Rob. Res. 20(5), 378–400 (2001). http://doi.org/10.1177/02783640122067453
  18. 18.
    Lefrançois, S., Gosselin, C.: Point-to-point motion control of a pendulum-like 3-DOF underactuated cable-driven robot. In: IEEE International Conference on Robotics and Automation, pp. 5187–5193 (2010). http://doi.org/10.1109/ROBOT.2010.5509656
  19. 19.
    Li, Y., Littlefield, Z., Bekris, K.E.: Asymptotically optimal sampling-based kinodynamic planning. Int. J. Rob. Res. 35(5), 528–564 (2016). http://doi.org/10.1177/0278364915614386
  20. 20.
    Porta, J.M., Ros, L., Bohigas, O., Manubens, M., Rosales, C., Jaillet, L.: The cuik suite: analyzing the motion of closed-chain multibody systems. IEEE Rob. Autom. Mag. 21(3), 105–114 (2014). http://doi.org/10.1109/MRA.2013.2287462
  21. 21.
    Potra, F.A., Yen, J.: Implicit numerical integration for Euler-Lagrange equations via tangent space parametrization. J. Struct. Mech. 19(1), 77–98 (1991). http://doi.org/10.1080/08905459108905138
  22. 22.
    Zanotto, D., Rosati, G., Agrawal, S.K.: Modeling and control of a 3-DOF pendulum-like manipulator. In: IEEE International Conference on Robotics and Automation, pp. 3964–3969 (2011). http://doi.org/10.1109/ICRA.2011.5980198
  23. 23.
    Zoso, N., Gosselin, C.: Point-to-point motion planning of a parallel 3-DOF underactuated cable-suspended robot. In: IEEE International Conference on Robotics and Automation, pp. 2325–2330 (2012). http://doi.org/10.1109/ICRA.2012.6224598

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institut de Robòtica i Informàtica IndustrialCSIC-UPCBarcelonaSpain

Personalised recommendations