Advertisement

Markovian Queue with Garbage Collection

  • Illés HorváthEmail author
  • István Finta
  • Ferenc Kovács
  • András Mészáros
  • Roland Molontay
  • Krisztián Varga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10378)

Abstract

Garbage collection is a fundamental component of memory management in several software frameworks. We present a general two-dimensional Markovian model of a queue with garbage collection where the input process is Markov-modulated and the memory consumption can be modeled with discretisation. We derive important performance measures (also including garbage collection-related measures like mean garbage collection cycle length). The model is validated via measurements from a real-life data processing pipeline.

Keywords

Memory management Garbage collection Stochastic modelling Markovian modelling 

Notes

Acknowledgment

We would like to thank Miklós Telek and Gábor Horváth for their valuable help and insight. This research is partially supported by the OTKA K123914 project.

References

  1. 1.
    Ganglia monitoring system. http://ganglia.sourceforge.net/. Accessed 08 May 2017
  2. 2.
    Apache Storm. http://storm.apache.org/. Accessed 08 May 2017
  3. 3.
    Bacon, D.F., Cheng, P., Rajan, V.T.: The metronome: a simpler approach to garbage collection in real-time systems. In: Meersman, R., Tari, Z. (eds.) OTM 2003. LNCS, vol. 2889, pp. 466–478. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-39962-9_52CrossRefGoogle Scholar
  4. 4.
    Balsamo, S., Dei Rossi, G.-L., Marin, A.: Optimisation of virtual machine garbage collection policies. In: Al-Begain, K., Balsamo, S., Fiems, D., Marin, A. (eds.) ASMTA 2011. LNCS, vol. 6751, pp. 70–84. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21713-5_6CrossRefGoogle Scholar
  5. 5.
    Blackburn, S.M., Cheng, P., McKinley, K.S.: Oil and water? High performance garbage collection in Java with MMTk. In: Proceedings of the 26th International Conference on Software Engineering. IEEE Computer Society (2004)Google Scholar
  6. 6.
    Bolch, G., et al.: Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications. Wiley, Hoboken (2006)CrossRefGoogle Scholar
  7. 7.
    Brodie-Tyrrell, W.: Surf: an abstract model of distributed garbage collection. Dissertation (2008)Google Scholar
  8. 8.
    Bux, W., Iliadis, I.: Performance of greedy garbage collection in flash-based solid-state drives. Perform. Eval. 67(11), 1172–1186 (2010)CrossRefGoogle Scholar
  9. 9.
    Detlefs, D., et al.: Garbage-first garbage collection. In: Proceedings of the 4th International Symposium on Memory Management. ACM (2004)Google Scholar
  10. 10.
    Gribaudo, M., Telek, M.: Fluid models in performance analysis. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 271–317. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72522-0_7CrossRefzbMATHGoogle Scholar
  11. 11.
    Jones, R., Lins, R.D.: Garbage Collection: Algorithms for Automatic Dynamic Memory Management. Wiley, New York (1996)zbMATHGoogle Scholar
  12. 12.
    Jones, G.L., et al.: Fluid queue models of battery life. In: 2011 IEEE 19th Annual International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems. IEEE (2011)Google Scholar
  13. 13.
    Kwon, O., et al.: FeGC: an efficient garbage collection scheme for flash memory based storage systems. J. Syst. Softw. 84(9), 1507–1523 (2011)CrossRefGoogle Scholar
  14. 14.
    Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM, Philadelphia (1999)CrossRefGoogle Scholar
  15. 15.
    Li, Y., Lee, P.P.C., Lui, J.C.S.: Stochastic modeling and optimization of garbage collection algorithms in solid-state drive systems. Queueing Syst. 77(2), 115–148 (2014)Google Scholar
  16. 16.
    Lowry, M.C.: A new approach to the train algorithm for distributed garbage collection. Dissertation (2004)Google Scholar
  17. 17.
    Kressner, D., Macedo, F.: Low-rank tensor methods for communicating Markov processes. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 25–40. Springer, Cham (2014). doi: 10.1007/978-3-319-10696-0_4CrossRefGoogle Scholar
  18. 18.
    Medhi, J.: Stochastic Models in Queueing Theory. Academic Press, Cambridge (2002)zbMATHGoogle Scholar
  19. 19.
    Nazarathy, Y., Weiss, G.: A fluid approach to job shop scheduling: theory, software and experimentation. J. Sched. 13, 509–529 (2009)CrossRefGoogle Scholar
  20. 20.
    Neuts, M.: Matrix-Geometric Solutions in Stochastic Models. An Algoritheoremic Approach. The Johns Hopkins University Press, Baltimore (1981)Google Scholar
  21. 21.
    Norcross, S.J.: Deriving distributed garbage collectors from distributed termination algorithms. Dissertation, University of St Andrews (2004)Google Scholar
  22. 22.
    Plainfossé, D., Shapiro, M.: A survey of distributed garbage collection techniques. In: Baler, H.G. (ed.) IWMM 1995. LNCS, vol. 986, pp. 211–249. Springer, Heidelberg (1995). doi: 10.1007/3-540-60368-9_26CrossRefGoogle Scholar
  23. 23.
    Schoeberl, M.: Real-time garbage collection for Java. In: Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC 2006). IEEE (2006)Google Scholar
  24. 24.
    Lakatos, L., Szeidl, L., Telek, M.: Introduction to Queueing Systems with Telecommunication Applications. Springer, New York (2013)CrossRefGoogle Scholar
  25. 25.
    Van Houdt, B.: A mean field model for a class of garbage collection algorithms in flash-based solid state drives. In: ACM SIGMETRICS Performance Evaluation Review. vol. 41, no. 1. ACM (2013)Google Scholar
  26. 26.
    Van Houdt, B.: Performance of garbage collection algorithms for flash-based solid state drives with hot/cold data. Perform. Eval. 70(10), 692–703 (2013)CrossRefGoogle Scholar
  27. 27.
    Wilson, P.R.: Uniprocessor garbage collection techniques. In: Bekkers, Y., Cohen, J. (eds.) IWMM 1992. LNCS, vol. 637, pp. 1–42. Springer, Heidelberg (1992). doi: 10.1007/BFb0017182CrossRefGoogle Scholar
  28. 28.
    Yang, Y., Zhu, J.: Analytical modeling of garbage collection algorithms in hotness-aware flash-based solid state drives. In: 2014 30th Symposium on Mass Storage Systems and Technologies (MSST). IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Illés Horváth
    • 1
    Email author
  • István Finta
    • 2
  • Ferenc Kovács
    • 2
  • András Mészáros
    • 3
  • Roland Molontay
    • 4
  • Krisztián Varga
    • 2
  1. 1.MTA-BME Information Systems Research GroupBudapestHungary
  2. 2.Nokia, Bell LabsBudapestHungary
  3. 3.Department of Networked Systems and ServicesBudapest University of Technology and EconomicsBudapestHungary
  4. 4.Department of StochasticsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations