Advertisement

Equivalence and Lumpability of FSPNs

  • Falko Bause
  • Peter Buchholz
  • Igor V. Tarasyuk
  • Miklós Telek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10378)

Abstract

We consider equivalence relations for Fluid Stochastic Petri Nets (FSPNs). Based on equivalence relations for Stochastic Petri Nets (SPNs), which are derived from lumpability for Markov Chains, and from lumpability for certain classes of differential equations, we define an equivalence relation for FSPNs. Lumpability for the differential equations is based on a finite discretization approach and permutations of the fluid part of the FSPN.

As for other modeling formalisms, the availability of an appropriate equivalence relation allows one to aggregate sets of equivalent states into single states. This state space reduction can be exploited for a more efficient analysis of FSPNs using a discretization approach. Lumpable equivalence relations can be computed from an appropriately discretized state space of the stochastic process or directly from the FSPN.

Keywords

Fluid Stochastic Petri Nets Lumpability Equivalence 

References

  1. 1.
    Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31, 59–75 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buchholz, P.: A notion of equivalence for stochastic Petri nets. In: Michelis, G., Diaz, M. (eds.) ICATPN 1995. LNCS, vol. 935, pp. 161–180. Springer, Heidelberg (1995). doi: 10.1007/3-540-60029-9_39 CrossRefGoogle Scholar
  3. 3.
    Chen, D., Hong, Y., Trivedi, K.S.: Second-order stochastic fluid models with fluid-dependent flow rates. Perform. Eval. 49(1/4), 341–358 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed colored nets and symmetric modeling applications. IEEE Trans. Comput. 42(11), 1343–1360 (1993)CrossRefGoogle Scholar
  5. 5.
    Ciardo, G., Nicol, D.M., Trivedi, K.S.: Discrete-event simulation of fluid stochastic Petri nets. IEEE Trans. Softw. Eng. 25(2), 207–217 (1999)CrossRefGoogle Scholar
  6. 6.
    Coxson, P.G.: Lumpability and observability of linear systems. J. Math. Anal. Appl. 99, 435–446 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains. Inf. Process. Lett. 87(6), 309–315 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gribaudo, M., Horváth, A.: Fluid stochastic Petri nets augmented with flush-out arcs: a transient analysis technique. IEEE Trans. Softw. Eng. 28(10), 944–955 (2002)CrossRefGoogle Scholar
  9. 9.
    Gribaudo, M., Sereno, M., Horváth, A., Bobbio, A.: Fluid stochastic Petri nets augmented with flush-out arcs: modelling and analysis. Discret. Event Dyn. Syst. 11(1–2), 97–117 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gribaudo, M., Telek, M.: Fluid models in performance analysis. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 271–317. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72522-0_7 CrossRefGoogle Scholar
  11. 11.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  12. 12.
    Horton, G., Kulkarni, V.G., Nicol, D.M., Trivedi, K.S.: Fluid stochastic Petri nets: theory, applications, and solution techniques. Eur. J. Oper. Res. 105(1), 184–201 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a Markovian process algebra. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 293–306. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48057-1_23 CrossRefGoogle Scholar
  14. 14.
    Jasak, H.: Errror analysis and estimation for the finite volume method with applications to fluid flows. Ph.D. thesis, University of London, Department of Mechanical Engineering (1996)Google Scholar
  15. 15.
    Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1976)zbMATHGoogle Scholar
  16. 16.
    Toth, J., Li, G., Rabitz, H., Tomlin, A.S.: The effect of lumping and expanding on kinetic differential equations. SIAM J. Appl. Math. 57(6), 1531–1556 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tschaikowski, M., Tribastone, M.: Exact fluid lumpability in Markovian process algebra. Theor. Comput. Sci. 538, 140–166 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12002-2_4 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Falko Bause
    • 1
  • Peter Buchholz
    • 1
  • Igor V. Tarasyuk
    • 2
  • Miklós Telek
    • 3
  1. 1.Informatik 4TU DortmundDortmundGermany
  2. 2.A.P. Ershov Institute of Informatics SystemsSiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation
  3. 3.MTA-BME Information Systems Research Group, Department of Networked Systems and ServicesTechnical University of BudapestBudapestHungary

Personalised recommendations