Advertisement

A Multi-layered Architecture for Analysis of Non-technical-Skills in Critical Situations

  • Yannick BourrierEmail author
  • Francis Jambon
  • Catherine Garbay
  • Vanda Luengo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10331)

Abstract

In most technical domains, non-technical skills have an influence on a worker’s performance. Studies have shown that these skills are most influential during critical situations, where usual technical procedures cannot be successfully applied. This article describes the challenges raised by the diagnosis of non-technical skills during critical situations inside a virtual environment, and presents the first steps of this diagnosis task, namely the evaluation of a learner’s perceptual and gestural performance using a neural network.

Keywords

Ill-defined domains Non-technical skills Critical situations Neural networks 

References

  1. 1.
    Flin, R., Yule, S., Paterson-Brown, S., Maran, N., Rowley, D., Youngson, G.: Teaching surgeons about non-technical skills. Surgeon 5(2), 86–89 (2007)CrossRefGoogle Scholar
  2. 2.
    Bourrier, Y., Jambon, F., Garbay, C., Luengo, V.: An approach to the tel teaching of non-technical skills from the perspective of an ill-defined problem. In: Verbert, K., Sharples, M., Klobučar, T. (eds.) EC-TEL 2016. LNCS, vol. 9891, pp. 555–558. Springer, Cham (2016). doi: 10.1007/978-3-319-45153-4_62 Google Scholar
  3. 3.
    Lynch, C., Ashley, K., Aleven, V., Pinkwart, N.: Defining ill-defined domains; a litera-ture survey. In: Proceedings of Intelligent Tutoring Systems for Ill-Defined Domains Workshop, ITS 2006, pp. 1–10 (2006)Google Scholar
  4. 4.
    Fournier-Viger, P., Nkambou, R., Nguifo, E.M.: Building intelligent tutoring systems for ill-defined domains. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems. Springer, Heidelberg (2010)Google Scholar
  5. 5.
    Crundall, D., Chapman, P., Trawley, S., Collins, L., Van Loon, E., Andrews, B., Underwood, G.: Some hazards are more attractive than others: drivers of varying experience respond differently to different types of hazard. Accid. Anal. Prev. 45, 600–609 (2012)CrossRefGoogle Scholar
  6. 6.
    Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yannick Bourrier
    • 1
    • 2
    Email author
  • Francis Jambon
    • 2
  • Catherine Garbay
    • 2
  • Vanda Luengo
    • 1
  1. 1.UPMC – LIP6ParisFrance
  2. 2.UGA – LIGGrenobleFrance

Personalised recommendations