Molecular, Neuronal, and Behavioral Mechanism of Communication Among Insect Species: A Review

  • Iswar Baitharu
  • Sabita Shroff
  • Jayanta Kumar Sahu
Chapter

Abstract

Insects are the largest group of invertebrates having unique modalities of communication among members of the same species. Conspecific communication among insect species occurs mainly through visual, tactile, chemical, and behavioral changes. A number of studies on different insect models have been conducted by several researchers to understand the molecular, neuronal, and behavioral mechanism underlying communication among conspecifics. Though huge volume of research has been done to understand the mechanistic details of insect communication, there are a number of answered questions which require special attention. Understanding mechanisms of communication among insects has a number of potential applications in devising appropriate and sustainable control and/or management of insect population in the crop field. Pheromones are being used to effectively manage insect population since long before. Genetic basis of odor detections and interpretation of different odorants by insect species that carry message for different purposes involves several signaling receptors including G-protein-coupled receptor (GPCR) and second messenger signaling. Neuronal firing pattern following exposure to a pheromonal compound explains partially the mechanism of conspecific message delivery conspecific. However, how limited number of odorant-binding proteins that detect large spectrum of odorant species and differentiate as a different signal is not yet understood.

Keywords

Communication Insect Odorant Behavior Neuronal Molecular mechanism 

References

  1. Acosta-Avalos D, Wajnberg E, Oliveira PS, Leal I, Farina M, Esquivel DMS (1999) Isolation of magnetic nanoparticles from Pachycondyla marginata ants. J Exp Biol 202:2687–2692PubMedGoogle Scholar
  2. Anderson JB, Vander Meer RK (1993) Magnetic orientation in the fire ant, Solenopsis invicta. Naturwissenschaften 80:568–570CrossRefGoogle Scholar
  3. Anton S (1996) Central olfactory pathways in mosquitoes and other insects. Ciba Found Symp 200:184–192. discussion 192–196, 226–232PubMedGoogle Scholar
  4. Aquiloni L, Tricarico E, SpringerLink (Online service) Springer International Publishing (2015) In: Aquiloni L, Tricarico E (eds) Social recognition in invertebrates the knowns and the unknowns. Springer International Publishing, BerlinCrossRefGoogle Scholar
  5. Banks AN, Srygley RB (2003) Orientation by magnetic field in leaf-cutter ants, Atta Colombica (hymenoptera: Formicidae). Ethology 109:835–846CrossRefGoogle Scholar
  6. Blaustein DN, Simmons RB, Burgess MF, Derby CD, Nishikawa M, Olson KS (1993) Ultrastructural localization of 5’AMP odorant receptor sites on the dendrites of olfactory receptor neurons of the spiny lobster. J Neurosci 13:2821–2828CrossRefPubMedGoogle Scholar
  7. Blomquist GJ, Tillman JA, Mpuru S, Seybold SJ (1998) The cuticle and cuticular hydrocarbons of insects: structure, function and biochemistry. In: Vander Meer RK, Breed M, Winston M, Espelie C (eds) Pheromone communication in social insects. Westview Press, Boulder, CO, pp 34–54Google Scholar
  8. Carde RT (2014) Defining attraction and aggregation pheromones: teleological versus functional perspectives. J Chem Ecol 40:519–520CrossRefPubMedGoogle Scholar
  9. Chittka L, Williams NM, Rasmussen H, Thomson JD (1998) Navigation without vision: bumblebee orientation in complete darkness. Proc R Soc Lond B 266:45–50CrossRefGoogle Scholar
  10. Chung H, Carroll SB (2015) Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37:822–830CrossRefPubMedPubMedCentralGoogle Scholar
  11. Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in drosophila. Neuron 22:327–338CrossRefPubMedGoogle Scholar
  12. Datta SR, Vasconcelos ML, Ruta V, Luo S, Wong A, Demir E, Flores J, Balonze K, Dickson BJ, Axel R (2008) The drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452:473–477CrossRefPubMedGoogle Scholar
  13. Dear TN, Boehm T, Keverne EB, Rabbitts TH (1991) Novel genes for potential ligand-binding proteins in subregions of the olfactory mucosa. EMBO J 10:2813–2819PubMedPubMedCentralGoogle Scholar
  14. Dekker T, Revadi S, Mansourian S, Ramasamy S, Lebreton S, Becher PG, Angeli S, Rota-Stabelli O, Anfora G (2015) Loss of drosophila pheromone reverses its role in sexual communication in Drosophila suzukii. Proc Biol Sci 282:20143018CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dickens JC, Callahan FE, Wergin WP, Murphy CA, Vogt RG (1998) Odorant binding proteins of true bugs. Generic specificity, sexual dimorphism, and association with subsets of chemosensory sensilla. Ann N Y Acad Sci 855:306–310CrossRefPubMedGoogle Scholar
  16. Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ (1991) Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 60:653–688CrossRefPubMedGoogle Scholar
  17. Du G, Prestwich GD (1995) Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry 34:8726–8732CrossRefPubMedGoogle Scholar
  18. Dweck HK, Ebrahim SA, Thoma M, Mohamed AA, Keesey IW, Trona F, Lavista-Llanos S, Svatos A, Sachse S, Knaden M et al (2015) Pheromones mediating copulation and attraction in drosophila. Proc Natl Acad Sci U S A 112:E2829–E2835CrossRefPubMedPubMedCentralGoogle Scholar
  19. Eibl-Eibesfeldt I, Eibl-Eibesfeldt E (1967) Das Parasitenabwehren der Minima- Arbeiterinnen der Blattschneider-Ameise (Atta cephalotes). Z Tierpsychol 24:278–281PubMedGoogle Scholar
  20. Ferguson SS, Downey WER, Colapietro AM, Barak LS, Menard L, Caron MG (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271:363–366CrossRefPubMedGoogle Scholar
  21. Ferveur JF (2005) Cuticular hydrocarbons: their evolution and roles in drosophila pheromonal communication. Behav Genet 35:279–295CrossRefPubMedGoogle Scholar
  22. Freedman NJ, Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. Recent Prog Horm Res 51:319–351. discussion 352–353PubMedGoogle Scholar
  23. Frisch K (1954) The dancing bees: an account of the life and senses of the honey bee, 1st edn. Springer-Verlag, Wien, pp XIV–183CrossRefGoogle Scholar
  24. Frisch K, Wenner AM, Johnson DL (1967) Honeybees: do they use direction and distance information provided by their dancers? Science 158:1072–1077CrossRefGoogle Scholar
  25. Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein coupled receptors. Endocr Rev 21:90–113CrossRefPubMedGoogle Scholar
  26. Gould JL (1980) The case for magnetic sensitivity in birds and bees (such as it is): surprising concentrations of magnetite in the tissues of some animals may explain their sensitivity to the earth’s magnetic field. Am Sci 68:256–267Google Scholar
  27. Graham LA, Davies PL (2002) The odorant-binding proteins of Drosophila melanogaster. Annotation and characterization of a divergent gene family. Gene 292:43–55CrossRefPubMedGoogle Scholar
  28. Greenfield MD (2002) Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, OxfordGoogle Scholar
  29. Haberer W, Steiger S, Müller JK (2014) Dynamic changes in volatile emissions of breeding burying beetles. Physiol Entomol 39:153–164CrossRefGoogle Scholar
  30. Hansson BS, Christensen TA (1999) Functional characteristics of the antennal lobe. In: Hansson BS (ed) Insect olfaction. Springer, Berlin, pp 125–161CrossRefGoogle Scholar
  31. Hickling R, Brown RL (2000) Analysis of acoustic communication by ants. J Acoust Soc Am 108:1920–1929CrossRefPubMedGoogle Scholar
  32. Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631CrossRefPubMedGoogle Scholar
  33. Hölldobler B (1999) Multimodal signals in ant communication. J Comp Physiol 184A:129–141Google Scholar
  34. Imen S, Christian M, Virginie D, Colette R (2015) Intraspecific signals inducing aggregation in Periplaneta americana (Insecta: Dictyoptera). Environ Entomol 44:713–723CrossRefPubMedGoogle Scholar
  35. Inglese J, Freedman NJ, Koch WJ, Lefkowitz RJ (1993) Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem 268:23735–23738PubMedGoogle Scholar
  36. Kaissling K-E (1986) Temporal characteristics of pheromone receptor cell responses in relation to orientation behaviour of moths. In: Payne TL, Birchm MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Oxford University Press, Oxford, pp 193–200Google Scholar
  37. Kaissling K-E (1987) In: Colbow K (ed) R. H. Wright lectures on insect olfaction. Simon Fraser University, Burnaby, BCGoogle Scholar
  38. Kim MS, Repp A, Smith DP (1998) LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150:711–721PubMedPubMedCentralGoogle Scholar
  39. Krieger MJ, Ross KG (2002) Identification of a major gene regulating complex social behavior. Science 295:328–232CrossRefPubMedGoogle Scholar
  40. Lebreton S, Grabe V, Omondi AB, Ignell R, Becher PG, Hansson BS, Sachse S, Witzgall P (2014) Love makes smell blind: mating suppresses pheromone attraction in drosophila females via Or65a olfactory neurons. Sci Rep 4:7119CrossRefPubMedPubMedCentralGoogle Scholar
  41. Liu W, Liang X, Gong J, Yang Z, Zhang YH, Zhang JX, Rao Y (2011) Social regulation of aggression by pheromonal activation of Or65a olfactory neurons in drosophila. Nat Neurosci 14:896–902CrossRefPubMedGoogle Scholar
  42. Maïbèche-Coisné M, Sobrio F, Delaunay T, Lettere M, Dubroca J, Jacquin-Joly E, Nagnan-LeMeillour P (1997) Pheromone binding proteins of the moth mamestra brassicae: specificity of ligand binding. Insect Biochem Mol Biol 27:213–221CrossRefGoogle Scholar
  43. Maida R, Krieger J, Gebauer T, Lange U, Ziegelberger G (2000) Three pheromone binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea Pernyi. Eur J Biochem 267:2899–2908CrossRefPubMedGoogle Scholar
  44. Merrill CE, Riesgo-Escovar JR, Pitts RJ, Kafatos FC, Carlson JR, Zwiebel LJ (2002) Visual arrestins in olfactory pathways of drosophila and the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 99:1633–1638CrossRefPubMedPubMedCentralGoogle Scholar
  45. Michelsen A, Kirchner WH, Andersen BB, Lindauer M (1986) The tooting and quacking vibration signals of honeybee queens: a quantitative analysis. J Comp Physiol 158A:605–611CrossRefGoogle Scholar
  46. Michelsen A, Andersen BB, Kirchner WH, Lindauer M (1989) Honeybees can be recruited by a mechanical model of a dancing bee. Naturwissenschaften 76:277–280CrossRefGoogle Scholar
  47. Müller JK, Eggert A-K, Elsner T (2003) Nestmate recognition in burying beetles: the “breeder’s badge” as a cue used by females to distinguish their mates from male intruders. Behav Ecol 14:212–220CrossRefGoogle Scholar
  48. Murlis J, Willis MA, Cardé RT (2000) Spatial and temporal structures of pheromone plumes in fields and forests. Physiol Entomol 25:211–222CrossRefGoogle Scholar
  49. Nelson DR, Blomquist GJ (1995) Insect waxes. In: Hamilton RJ, Christie WW (eds) Waxes: chemistry, molecular biology and functions. The Oily Press, England, pp 1–90Google Scholar
  50. Nieh JC (2004) Recruitment communication in stingless bees (hymenoptera, Apidae, Meliponinae). Apidologie 35:159–182CrossRefGoogle Scholar
  51. Nikonov AA, Valiyaveettil JT, Leal WS (2001) A photoaffinity-labeled green leaf volatile compound “tricks” highly selective and sensitive insect olfactory receptor neurons. Chem Senses 26:49–54CrossRefPubMedGoogle Scholar
  52. Nikonov AA, Peng G, Tsurupa G, Leal WS (2002) Unisex pheromone detectors and pheromone-binding proteins in scarab beetles. Chem Senses 27:495–504CrossRefPubMedGoogle Scholar
  53. Pevsner J, Trifiletti R, Strittmatter SM, Synder SH (1985) Isolation and characterization of an olfactory receptor protein for odorant pyrazines. Proc Natl Acad Sci U S A 82:3050–3054CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pikielny CW, Hasan G, Rouyer F, Rosbash M (1994) Members of a family of drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 12:35–49CrossRefPubMedGoogle Scholar
  55. Pilpel Y, Sosinsky A, Lancet D (1998) Molecular biology of olfactory receptors. Essays Biochem 33:93–104CrossRefPubMedGoogle Scholar
  56. Pippig S, Andexinger S, Daniel K, Puzicha M, Caron MG, Lefkowitz RJ, Lohse MJ (1993) Overexpression of beta-arrestin and beta-adrenergic receptor kinase augment desensitization of beta 2-adrenergic receptors. J Biol Chem 268:3201–3208PubMedGoogle Scholar
  57. Plettner E, Lazar J, Prestwich EG, Prestwich GD (2000) Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemistry 39:8953–8962CrossRefPubMedGoogle Scholar
  58. Roces F, Hölldobler B (1995) Vibrational communication between hitchhikers and foragers in leaf-cutting ants (Atta cephalotes). Behav Ecol Sociobiol 37:297–302CrossRefGoogle Scholar
  59. Roces F, Hölldobler B (1996) Use of stridulation in foraging leaf-cutting ants: mechanical support during cutting or short-range recruitment signal? Behav Ecol Sociobiol 39:293–299CrossRefGoogle Scholar
  60. Roces F, Tautz J (2001) Ants are deaf. J Acoust Soc Am 109:3080–3082CrossRefPubMedGoogle Scholar
  61. Röhrig A, Kirchner WH, Leuthold RH (1999) Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insect Soc 46:71–77CrossRefGoogle Scholar
  62. Rosengren R, Pamilo P (1978) Effect of winter timber felling on behaviour of foraging wood ants (Formica rufagroup) in early spring. Memorabilia Zool 29:143–155Google Scholar
  63. Sakurai T, Namiki S, Kanzaki R (2014) Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori. Front Physiol 5:125CrossRefPubMedPubMedCentralGoogle Scholar
  64. Schneider D (1957) Elektrophysiologische untersuchungen von chemo- und mechanorezeptoren der antenne des seidenspinners Bombyx mori L. Z Vergl Physiol 40:8–41CrossRefGoogle Scholar
  65. Schneider D, Boeckh J (1962) Rezeptorpotential und nervenimpulse einzelner olfaktorischer sensillen der insektenantenne. Z Vergl Physiol 45:405–412CrossRefGoogle Scholar
  66. Stocker RF (1994) The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 275:3–26CrossRefPubMedGoogle Scholar
  67. Strader CD, Fong TM, Tota MR, Underwood D (1994) Structure and function of G protein-coupled receptors. Annu Rev Biochem 63:101–132CrossRefPubMedGoogle Scholar
  68. Suh E, Bohbot JD, Zwiebel LJ (2014) Peripheral olfactory signaling in insects. Curr Opin Insect Sci 6:86–92CrossRefPubMedPubMedCentralGoogle Scholar
  69. van Zweden JS, d’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Insect hydrocarbons: biology, biochemistry and chemical ecology, vol 11. Cambridge University Press, Cambridge, pp 222–243CrossRefGoogle Scholar
  70. Vogt RG (1987) The molecular basis of pheromone reception: its influence on behavior. In: Prestwich GD, Blomquis GJ (eds) Pheromone biochemistry. Academic Press, New York, pp 385–431Google Scholar
  71. Vogt RG, Rybczynski R, Lerner MR (1991) Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: comparison with other insect OBPs and their signal peptides. J Neurosci 11:2972–2984CrossRefPubMedGoogle Scholar
  72. Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102:147–159CrossRefPubMedGoogle Scholar
  73. Wang L, Anderson DJ (2010) Identification of an aggression-promoting pheromone and its receptor neurons in drosophila. Nature 463:227–231CrossRefPubMedGoogle Scholar
  74. Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol 189:579–588CrossRefGoogle Scholar
  75. Wertheim B, Allemand R, Vet LEM, Dicke M (2006) Effects of aggregation pheromone on individual behaviour and food web interactions: a field study on drosophila. Ecol Entomol 31:216–226CrossRefGoogle Scholar
  76. Wetzel CH, Behrendt H-J, Gisselmann G, Störtkuhl KF, Hovemann B, Hatt H (2001) Functional expression and characterization of a drosophila odorant receptor in a heterologous cell system. Proc Natl Acad Sci 98:9377–9380CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wojtasek H, Picimbon JF, Leal WS (1999) Identification and cloning of odorant binding proteins from the scarab beetle Phyllopertha diversa. Biochem Biophys Res Commun 263:832–837CrossRefPubMedGoogle Scholar
  78. Wyatt TD (2014) Pheromones and animal behavior: chemical signals and signatures, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  79. Yew JY, Chung H (2015) Insect pheromones: an overview of function, form, and discovery. Prog Lipid Res 59:88–105CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Iswar Baitharu
    • 1
  • Sabita Shroff
    • 2
  • Jayanta Kumar Sahu
    • 3
  1. 1.Department Environmental SciencesSambalpur UniversityBurlaIndia
  2. 2.School of Chemistry, Sambalpur UniversityBurlaIndia
  3. 3.Department of Life ScienceNational Institute of TechnologyRourkelaIndia

Personalised recommendations