Insect RNAi: Integrating a New Tool in the Crop Protection Toolkit

  • Leela Alamalakala
  • Srinivas Parimi
  • Navid Patel
  • Bharat Char
Chapter

Abstract

Protecting crops against insect pests is a major focus area in crop protection. Over the past two decades, biotechnological interventions, especially Bt proteins, have been successfully implemented across the world and have had major impacts on reducing chemical pesticide applications. As insects continue to adapt to insecticides, both chemical and protein-based, new methods, molecules, and modes of action are necessary to provide sustainable solutions. RNA interference (RNAi) has emerged as a significant tool to knock down or alter gene expression profiles in a species-specific manner. In the past decade, there has been intense research on RNAi applications in crop protection. This chapter looks at the current state of knowledge in the field and outlines the methodology, delivery methods, and precautions required in designing targets. Assessing the targeting of specific gene expression is also an important part of a successful RNAi strategy. The current literature on the use of RNAi in major orders of insect pests is reviewed, along with a perspective on the regulatory aspects of the approach. Risk assessment of RNAi would focus on molecular characterization, food/feed risk assessment, and environmental risk assessment. As more RNAi-based products come through regulatory systems, either via direct application or plant expression based, the impact of this approach on crop protection will become clearer.

Keywords

Gene silencing RNA interference (RNAi) Insect control Double-stranded RNA (dsRNA) Short interfering RNA (siRNA) Risk assessment 

References

  1. Abrieux A, Debernard S, Maria A, Gaertner C, Anton S, Gadenne C, Duportets L (2013) Involvement of the G-protein-coupled dopamine/ecdysteroid receptor DopEcR in the behavioral response to sex pheromone in an insect. PLoS One 8:88. doi: 10.1371/journal.pone.0072785 CrossRefGoogle Scholar
  2. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195PubMedCrossRefGoogle Scholar
  3. Agrawal N, Malhotra P, Bhatnagar RK (2004) siRNA-directed silencing of transgene expressed in cultured insect cells. Biochem Biophys Res Commun 320:428–434PubMedCrossRefGoogle Scholar
  4. Ahmad A, Negri I, Oliveira W, Brown C, Asiimwe P, Sammons B, Horak M, Jiang C, Carson D (2016) Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA. Transgenic Res 25:1–17PubMedCrossRefGoogle Scholar
  5. Allen ML, Walker WB (2012) Saliva of Lygus lineolaris digests double stranded ribonucleic acids. J Insect Physiol 58:391–396. doi: 10.1016/j.jinsphys.2011.12.014 PubMedCrossRefGoogle Scholar
  6. Alves AP, Lorenzen MD, Beeman RW, Foster JE, Siegfried BD (2010) RNA interference as a method for target-site screening in the western corn rootworm, Diabrotica virgifera virgifera. J Insect Sci 10:162. doi: 10.1673/031.010.14122 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Andrade CE, Hunter WB (2016) RNA interference – natural gene-based technology for highly specific pest control (HiSPeC). In: Abdurakhmonov IY (ed) RNA interference. InTech, Croatia, pp 391–409Google Scholar
  8. Antonio DSM, Guidugli-Lazzarini KR, Do Nascimento AM, ZLP S, Hartfelder K (2008) RNAi-mediated silencing of vitellogenin gene function turns honeybee (Apis mellifera) workers into extremely precocious foragers. Naturwissenschaften 95:953–961. doi: 10.1007/s00114-008-0413-9 CrossRefGoogle Scholar
  9. Arakane Y, Hogenkamp DG, Zhu YC, Kramer KJ, Specht CA, Beeman RW, Kanost MR, Muthukrishnan S (2004) Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochem Mol Biol 34:291–304PubMedCrossRefGoogle Scholar
  10. Arimatsu Y, Kotani E, Sugimura Y, Furusawa T (2007) Molecular characterization of a cDNA encoding extracellular dsRNase and its expression in the silkworm, Bombyx mori. Insect Biochem Mol Biol 37:176–183PubMedCrossRefGoogle Scholar
  11. Aronstein K, Saldivar E (2005) Characterization of a honey bee Toll related receptor gene Am18w and its potential involvement in antimicrobial immune defense. Apidologie 36:3–14CrossRefGoogle Scholar
  12. Aronstein K, Oppert B, Lorenzen M (2011) RNAi in agriculturally-important arthropods. In: Grabowski PP (ed) RNA processing. In Tech, Shanghai, pp 157–180Google Scholar
  13. Asgari S (2013) MicroRNA functions in insect. Insect Biochem Mol Biol 43:388–397PubMedCrossRefGoogle Scholar
  14. Auer C, Frederick R (2009) Crop improvement using small RNAs: applications and predictive ecological risk assessments. Trends Biotechnol 27:644–651. doi: 10.1016/j.tibtech.2009.08.005 PubMedCrossRefGoogle Scholar
  15. Bachman PM, Huizinga KM, Jensen PD, Mueller G, Tan J, Uffman JP, Levine SL (2016) Ecological risk assessment for DvSnf7 RNA: a plant-incorporated protectant with targeted activity against western corn rootworm. Regul Toxicol Pharmacol 81:77–88. doi: 10.1016/j.yrtph.2016.08.001 PubMedCrossRefGoogle Scholar
  16. Barnard A-C, Nijhof AM, Gaspar ARM, Neitz AWH, Jongejan F, Maritz-Olivier C (2012) Expression profiling, gene silencing and transcriptional networking of metzincin metalloproteases in the cattle tick, Rhipicephalus (Boophilus) microplus. Vet Parasitol 186:403–414. doi: 10.1016/j.vetpar.2011.11.026 PubMedCrossRefGoogle Scholar
  17. Baum JA, Roberts JK (2014) Progress towards RNAi-mediated insect pest management. In: Dhadialla TS, Gill SS (eds) Insect midgut and insecticidal proteins, Advances in insect physiology, vol 47. Academic, London, pp 249–295CrossRefGoogle Scholar
  18. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O et al (2007) Control of coleopter an insect pests through RNA interference. Nat Biotechnol 25:1322–1326. doi: 10.1038/nbt1359
  19. Baum JA, Cajacob CA, Feldmann P, Heck GR, Nooren I, Plaetinck G, Maddelein W, Vaughn T (2011) Methods for control of insect infestation in plants and compositions thereof. US Patent No 7, 943,819Google Scholar
  20. Bautista MAM, Miyata T, Miura K, Tanaka T (2009) RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol 39:38–46PubMedCrossRefGoogle Scholar
  21. Beck M, Strand MR (2005) Glc1.8 from Microplitis demolitor bracovirus induces a loss of adhesion and phagocytosis in insect high five and S2 cells. J Virol 79:1861–1870PubMedPubMedCentralCrossRefGoogle Scholar
  22. Belles X (2010) Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annu Rev Entomol 55:111–128PubMedCrossRefGoogle Scholar
  23. Bettencourt R, Terenius O, Faye I (2002) Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Mol Biol 11:267–271PubMedCrossRefGoogle Scholar
  24. Bhatia V, Bhattacharya R, Uniyal PL, Singh R, Niranjan RS (2012) Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae. PLoS One 7:e46343. doi: 10.1371/journal.pone.0046343
  25. Blandin S, Moita LF, Köcher T, Wilm M, Kafatos FC, Levashina EA (2002) Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep 3:852–856PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bolognesi R, Ramaseshadri P, Anderson J, Bachman P, Clinton W, Flannagan R et al (2012) Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS One 7:e47534. doi: 10.1371/journal.pone.0047534
  27. Borgio JF (2010) RNAi mediated gene knockdown in sucking and chewing insect pests. J Biopesticides 36:153–161Google Scholar
  28. Bronkhorst AW, van Rij RP (2014) The long and short of antiviral defense: small RNA-based immunity in insects. Curr Opin Virol 7:19–28. doi: 10.1016/j.coviro.2014.03.010 PubMedCrossRefGoogle Scholar
  29. Camargo Barbosa GO, Possignolo IP et al (2016) RNA interference as a gene silencing tool to control Tuta absoluta in tomato (Solanum lycopersicum). Peer J 4:e2673. doi: 10.7717/peerj.2673 PubMedCrossRefGoogle Scholar
  30. Caplen NJ, Fleenor J, Fire A, Morgan RA (2000) dsRNA-mediated gene silencing in cultured Drosophila cells, a tissue culture model for the analysis of RNA interference. Gene 252:95–105PubMedCrossRefGoogle Scholar
  31. Carrière Y, Crickmore N, Tabashnik BE (2015) Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat Biotechnol 33:161–168PubMedCrossRefGoogle Scholar
  32. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655. doi: 10.1016/j.cell.2009.01.035 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Casacuberta JM, Devos Y, du Jardin P, Ramon M, Vaucheret H, Nogué F (2014) Biotechnological uses of RNAi in plants: risk assessment considerations. Trends Biotechnol 33:145–147. doi: 10.1016/j.tibtech.2014.12.003 CrossRefGoogle Scholar
  34. Chen J, Zhang D, Yao Q, Zhang J, Dong X, Tian H et al (2010) Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 19(6):777–786. doi: 10.1111/j.1365-2583.2010.01038.x PubMedCrossRefGoogle Scholar
  35. Chen X, Tian H, Zou L, Tang B, Hu J, Zhang W (2008) Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference. Bull Entomol Res 98(06):613–619PubMedCrossRefGoogle Scholar
  36. Choi H, Glatter T, Gstaiger M, Nesvizhskii AI (2012) SAINT-MS1: protein-protein interaction scoring using label-free intensity data in affinity purification-mass spectrometry experiments. J Proteome Res 11:2619–2624PubMedPubMedCentralCrossRefGoogle Scholar
  37. Christiaens O, Smagghe G (2014) The challenge of RNAi-mediated control of hemipterans. Curr Opin Insect Sci 6:15–21. doi: 10.1016/j.cois.2014.09.012 CrossRefGoogle Scholar
  38. Christiaens O, Sweveres L, Smagghe G (2014) DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides 53:307–314. doi: 10.1016/j.peptides.2013.12.014 PubMedCrossRefGoogle Scholar
  39. Chu CC, Sun W, Spencer JL, Pittendrigh BR, Seufferheld MJ (2014) Differential effects of RNAi treatments on field populations of the western corn rootworm. Pestic Biochem Physiol 110:1–6PubMedCrossRefGoogle Scholar
  40. Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A 97:6499–6503PubMedPubMedCentralCrossRefGoogle Scholar
  41. Coleman AD, Wouters RH, Mugford ST, Hogenhout SA (2015) Persistence and transgenerational effect of plant-mediated RNAi in aphids. J Exp Bot 66:541–548PubMedCrossRefGoogle Scholar
  42. Daly T, Buntin GD (2005) Effects of Bacillus thuringiensis transgenic corn for lepidopteran control on non-target arthropods. Environ Entomol 34:1292–1301. doi: 10.1603/0046-225X(2005)034[1292:EOBTTC]2.0.CO;2 CrossRefGoogle Scholar
  43. Dass CR, Choong PF (2008) Chitosan-mediated orally delivered nucleic acids: a gutful of gene therapy. J Drug Target 16:257–261PubMedCrossRefGoogle Scholar
  44. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84:403–408CrossRefGoogle Scholar
  45. Devos Y, Álvarez-Alfageme F, Gennaro A, Mestdagh S (2015) Assessment of unanticipated unintended effects of genetically modified plants on non-target organisms: a controversy worthy of pursuit? J Appl Entomol 140:1–10. doi: 10.1111/jen.12248. [Epub ahead of print]CrossRefGoogle Scholar
  46. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S, Couto A, Marra V, Keleman K, Dickson B (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156PubMedCrossRefGoogle Scholar
  47. Dubelman S, Fischer J, Zapata F, Huizinga K, Jiang C, Uffman J et al (2014) Environmental fate of double-stranded RNA in agricultural soils. PLoS One 9:e93155. doi: 10.1371/journal.pone.0093155 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Dykxhoorn DM, Lieberman J (2005) The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 56:401–423PubMedCrossRefGoogle Scholar
  49. Dzitoyeva S, Dimitrijevic N, Manev H (2001) Intra-abdominal injection of double-stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system. Mol Psychiatry 6(6):665–670PubMedCrossRefGoogle Scholar
  50. EFSA (European Food Safety Authority) (2010a) EFSA panel on plant protection products and their residues (PPR); scientific opinion on the development of specific protection goal options for environmental risk assessment of pesticides, in particular in relation to the revision of the guidance documents on aquatic and terrestrial ecotoxicology (SANCO/3268/2001 and SANCO/10329/2002). EFSA J 8(10):1821. doi: 10.2903/j.efsa.2010.1821. (55 pp)CrossRefGoogle Scholar
  51. EFSA (European Food Safety Authority) (2010b) EFSA panel on genetically modified organisms (GMO); scientific opinion on the assessment of potential impacts of genetically modified plants on non-target organisms. EFSA J 8(11):1877. doi: 10.2903/j.efsa.2010.1877. (72 pp)CrossRefGoogle Scholar
  52. Fabrick JA, Kanost MR, Baker JE (2004) RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella. J Insect Sci 4(15):9CrossRefGoogle Scholar
  53. Farooqui T, Robinson K, Vaessin H, Smith BH (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 23:5370–5380PubMedGoogle Scholar
  54. Feinberg EH, Hunter CP (2003) Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301:1545–1547PubMedCrossRefGoogle Scholar
  55. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRefGoogle Scholar
  56. Fishilevich E, Velez AM, Storer NP, Li HR, Bowling AJ, Rangasamy M, Worden SE, Narva KE, Siegfried BD (2016) RNAi as a management tool for the western corn rootworm, Diabrotica virgifera virgifera. Pest Manag Sci 72:1652–1663. doi: 10.1002/ps.4324 PubMedCrossRefGoogle Scholar
  57. FSANZ (2013) Response to Heinemann et al. on the regulation of GM crops and foods developed using gene silencing. http://www.foodstandards.govt.nz/consumer/gmfood/Documents/Heinemann%20Response%20210513.pdf
  58. Garbutt JS, Bellés X, Richards EH, Reynolds SE (2013) Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: evidence from Manduca sexta and Blattella germanica. J Insect Physiol 59:171–178PubMedCrossRefGoogle Scholar
  59. Gatehouse HS, Gatehouse LN, Malone LA, Hodges S, Tregidga E, Todd J (2004) Amylase activity in honey bee hypopharyngeal glands reduced by RNA interference. J Apic Res 43:9–13CrossRefGoogle Scholar
  60. Georghiou GP, Lagunes-Tejeda A (1991) The occurrence of resistance to pesticides in arthropods: an index of cases reported through 1989. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  61. Ghanim M, Kontsedalov S, Czosnek H (2007) Tissue-specific gene silencing by RNA interference in the whitefly, Bemisia tabaci (Gennadius). Insect Biochem Mol Biol 37:732–738. doi: 10.1016/j.ibmb.2007.04.006 PubMedCrossRefGoogle Scholar
  62. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gong L, Chen Y, Hu Z, Hu MY (2013) Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions. PLoS One 8:88. doi: 10.1371/journal.pone.0062990 Google Scholar
  64. Gong LA, Yang XQ, Zhang BL, Zhong GH, Hu MY (2011) Silencing of Rieske iron-sulfur protein using chemically synthesised siRNA as a potential biopesticide against Plutella xylostella. Pest Manag Sci 67:514–520. doi: 10.1002/ps.2086 PubMedCrossRefGoogle Scholar
  65. Gordon KH, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232PubMedCrossRefGoogle Scholar
  66. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150PubMedCrossRefGoogle Scholar
  67. Hassanien ITE, Meyering-Vos M, Hoffmann KH (2014) RNA interference reveals allatotropin functioning in larvae and adults of Spodoptera frugiperda (Lepidoptera, Noctuidae). Entomologia 2:56–64. doi: 10.4081/entomologia.2014.169 CrossRefGoogle Scholar
  68. He B, Chu Y, Yin M, Müllen K, An C, Shen J (2013) Fluorescent nanoparticle delivered dsRNA toward genetic control of insect pests. Adv Mater Weinheim 25:4580–4584. doi: 10.1002/adma.201301201 PubMedCrossRefGoogle Scholar
  69. Head G, Moar M, Eubanks M, Freeman B, Ruberson J, Hagerty A, Turnipseed S (2005) A multiyear, large-scale comparison of arthropod populations on commercially managed Bt and non-Bt cotton fields. Environ Entomol 34:1257–1266Google Scholar
  70. Heinemann JA, Kurenbach B, Quist D (2011) Molecular profiling – a tool for addressing emerging gaps in the comparative risk assessment of GMOs. Environ Int 37:1285–1293PubMedCrossRefGoogle Scholar
  71. Horn T, Boutros M (2010) E-RNAi: a web application for the multi-species design of RNAi reagents – 2010 update. Nucleic Acids Res 38:W332–W339PubMedPubMedCentralCrossRefGoogle Scholar
  72. Horn T, Sandmann T, Boutros M (2010) Design and evaluation of genome-wide libraries for RNA interference screens. Genome Biol 11:R61PubMedPubMedCentralCrossRefGoogle Scholar
  73. Horwich MD, Li C, Matranga C, Vagin V, Farley G, Wang P, Zamore PD (2007) The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 17:1265–1272PubMedCrossRefGoogle Scholar
  74. Hu X, Richtman NM, Zhao J-Z, Duncan KE, Niu X, Procyk LA, Oneal MA, Kernodle BM, Steimel JP, Crane VC, Sandahl G, Ritland JL, Howard RJ, Presnail JK, Lu AL, Wu G (2016) Discovery of midgut genes for the RNA interference control of corn rootworm. Sci Rep 6:30542. doi: 10.1038/srep30542 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Huang JH, Lee HJ (2011) RNA interference unveils functions of the hypertrehalosemic hormone on cyclic fluctuation of hemolymph trehalose and oviposition in the virgin female Blatella germanica. J Insect Physiol 57:858–864PubMedCrossRefGoogle Scholar
  76. Hunter W, Ellis J, Vanengelsdorp D, Hayes J, Westervelt D, Glick E, Williams M, Sela I, Maori E, Pettis J et al (2010) Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathog 6:e1001160PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hunter WB, Glick E, Paldi N, Bextine BR (2012) Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression. Southwest Entomol 37:85–87. doi: 10.3958/059.037.0110 CrossRefGoogle Scholar
  78. Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56(3):227–235. doi: 10.1016/j.jinsphys.2009.10.004 PubMedCrossRefGoogle Scholar
  79. ILSI-CERA (2011) Problem formulation for the environmental risk assessment of RNAi plants. International Life Sciences Institute, Center for Environmental Risk Assessment, Washington, D.C.Google Scholar
  80. Ivashuta S, Zhang Y, Wiggins BE, Ramaseshadri P, Segers GC, Johnson S et al (2015) Environmental RNAi in herbivorous insects. RNA 21:840–850. doi: 10.1261/rna.048116.114 PubMedPubMedCentralCrossRefGoogle Scholar
  81. James C (2014) Global status of commercialized biotech/GM Crops: 2014. ISAAA Brief No. 49. ISAAA, Ithaca, NYGoogle Scholar
  82. Jaubert-Possamai S, Le T, Bonhomme G, Christophides J, Rispe GK, Tagu D (2007) Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol 7:63PubMedPubMedCentralCrossRefGoogle Scholar
  83. Joga MR, Zotti MJ, Smagghe G, Christiaens O (2016) RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Front Physiol 7:553. doi: 10.3389/fphys.2016.00553 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Jose AM, Hunter CP (2007) Transport of sequence-specific RNA interference information between cells. Annu Rev Genet 41:305–330PubMedCrossRefGoogle Scholar
  85. Kamath RS, Martinex-Campos M, Zipperlen P, Frasher AG, Ahringer J (2000) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2:research0002PubMedPubMedCentralCrossRefGoogle Scholar
  86. Katoch R, Sethi A, Thakur N, Murdock LL (2013) RNAi for insect control: current perspective and future challenges. Appl Biochem Biotechnol 171(4):847–873PubMedCrossRefGoogle Scholar
  87. Kemp C, Mueller S, Goto A, Barbier V, Paro S, Bonnay F, Dostert C, Troxler L, Hetru C, Meignin C, Pfeffer S, Hoffmann JA, Imler JL (2013) Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila. J Immunol 190:650–658PubMedCrossRefGoogle Scholar
  88. Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–1026PubMedCrossRefGoogle Scholar
  89. Khajuria C, Buschman LL, Chen MS, Muthukrishnan S, Zhu KY (2010) A gut-specific chitinase gene essential for regulation of chitin content of peritrophic matrix and growth of Ostrinia nubilalis larvae. Insect Biochem Mol Biol 40:621–629. doi: 10.1016/j.ibmb.2010.06.003 PubMedCrossRefGoogle Scholar
  90. Khajuria C, Li H, Narva K, Rangasamy M, Siegfried B (2013) Effectiveness of dsRNA versus siRNA in RNAi mediated gene knock-down in western corn rootworm (Diabrotica virgifera virgifera). In: Program and abstracts, 46th annual meeting of the Society for Invertebrate Pathology Conference on Invertebrate Pathology and Microbial Control. Society for Invertebrate Pathology. Pittsburgh, PAGoogle Scholar
  91. Khajuria C, Vélez AM, Rangasamy M, Wang H, Fishilevich E, Frey MLF, Carneiro N, Premchand G, Narva KE, Siegfried BD (2015) Parental RNA interference of genes involved in embryonic development of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Insect Biochem Mol Biol 63:54–62PubMedCrossRefGoogle Scholar
  92. Kitzmann P, Schwirz J, Schmitt-Engel C, Bucher G (2013) RNAi phenotypes are influenced by the genetic background of the injected strain. BMC Genomics 14(1):5. doi: 10.1186/1471-2164-14-5 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Koch A, Kogel KH (2014) New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotechnol J 12:821–831. doi: 10.1111/pbi.12226 PubMedCrossRefGoogle Scholar
  94. Kolliopoulou A, Swevers L (2014) Science direct recent progress in RNAi research in lepidoptera?: intracellular machinery, antiviral immune response and prospects for insect pest control. Curr Opin Insect Sci:1–7. doi: 10.1016/j.cois.2014.09.019
  95. Kontogiannatos D, Swevers L, Maenaka K, Park EY, Iatrou K, Kourti A (2013) A functional characterization of a Juvenile Hormone esterase related gene in the moth Sesamia nonagrioides through RNA interference. PLoS One 8:88. doi: 10.1371/journal.pone.0073834 CrossRefGoogle Scholar
  96. Kumar M, Gupta GP, Rajam MV (2009) Silencing of acetylcholinesterase gene of Helicoverpa armigera by siRNA affects larval growth and its life cycle. J Insect Physiol 55:273–278. doi: 10.1016/j.jinsphys.2008.12.005 PubMedCrossRefGoogle Scholar
  97. Ladics GS, Bartholomaeus A, Bregitzer P, Doerrer NG, Gray A, Holzhauser T et al (2015) Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Res 24:587–603. doi: 10.1007/s11248-015-9867-7 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lawo NC, Wackers FL, Romeis J (2009) Indian Bt cotton varieties do not affect the performance of cotton aphids. PLoS One 4:e4804PubMedPubMedCentralCrossRefGoogle Scholar
  99. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81PubMedCrossRefGoogle Scholar
  100. Li X, Zhang M, Zhang H (2011) RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs. PLoS One 6(3):e17788. doi: 10.1371/journal.pone PubMedPubMedCentralCrossRefGoogle Scholar
  101. Li Y, Romeis J (2010) Bt maize expressing Cry3Bb1 does not harm the spider mite, Tetranychus urticae, or its ladybird beetle predator, Stethorus punctillum. Biol Control 53:337–344. doi: 10.1016/j.biocontrol.2009.12.003 CrossRefGoogle Scholar
  102. Liu F, Wang X, Zhao Y, Li Y, Liu Y, Sun J (2015) Silencing the HaAK gene by transgenic plant-mediated RNAi impairs larval growth of Helicoverpa armigera. Int J Biol Sci 11:67–74. doi: 10.7150/ijbs.10468 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Liu S, Ding Z, Zhang C, Yang B, Liu Z (2010) Gene knockdown by introthoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 40:666–671PubMedCrossRefGoogle Scholar
  104. Liu Y, Ye X, Jiang F, Liang C, Chen D, Peng J, Kinch LN, Grishin NV, Liu Q (2009) C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325:750–753PubMedPubMedCentralCrossRefGoogle Scholar
  105. Loy DL, Mogler MA, Loy DS, Janke B, Kamrud K, Scura ED, Harris DLH, Bartholomay LC (2012) Double-stranded RNA provides sequence dependent protection against infectious myonecrosis virus in Litopenaeus vannamei. J Gen Virol 93:880–888PubMedCrossRefGoogle Scholar
  106. Lum L, Yao S, Mozer B, Rovescalli A, Von Kessler D, Nirenberg M, Beachy PA (2003) Science 299:2039–2045PubMedCrossRefGoogle Scholar
  107. Lundgren JG, Duan JJ (2013) RNAi-based insecticidal crops. Bioscience 63:657–665. doi: 10.1525/bio.2013.63.8.8 CrossRefGoogle Scholar
  108. Luo Y, Wang X, Yu D, Kang L (2012) The SID-1 double-stranded RNA transporter is not required for systemic RNAi in the migratory locust. RNA Biol 9:663–671PubMedCrossRefGoogle Scholar
  109. Mamta RKR, Rajam MV (2016) Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Mol Biol 90:281–292. doi: 10.1007/s11103-015-0414-y PubMedCrossRefGoogle Scholar
  110. Mao J, Zeng F (2012) Feeding-based RNA interference of a gap gene is lethal to the pea aphid, Acyrthosiphon pisum. PLoS One 7:e48718PubMedPubMedCentralCrossRefGoogle Scholar
  111. Mao J, Zeng F (2014) Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae. Transgenic Res 23:145–152. doi: 10.1007/s11248-013-9739-y PubMedCrossRefGoogle Scholar
  112. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25(11):1307–1313PubMedCrossRefGoogle Scholar
  113. Mao YB, Tao XY, Xue XY, Wang LJ, Chen XY (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20:665–673. doi: 10.1007/s11248-010-9450-1 PubMedCrossRefGoogle Scholar
  114. Mao YB, Xue XY, Tao XY, Yang CQ, Wang LJ, Chen XY (2013) Cysteine protease enhances plant-mediated bollworm RNA interference. Plant Mol Biol 83:119–129. doi: 10.1007/s11103-013-0030-7 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Martin D, Maestro O, Cruz J, Mane-Padros D, Belles X (2006) RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. J Insect Physiol 52:410–416PubMedCrossRefGoogle Scholar
  116. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349PubMedCrossRefGoogle Scholar
  117. Miguel SK, Scott JG (2016) The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Manag Sci 72(4):801–809. doi: 10.1002/ps.4056 CrossRefGoogle Scholar
  118. Miller SC, Brown SJ, Tomoyasu Y (2008) Larval RNAi in Drosophila? Dev Genes Evol 218:505–510PubMedCrossRefGoogle Scholar
  119. Mitter N, Elizabeth AW, Karl ER, Li P, Jain RG et al (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants 3:16207. doi: 10.1038/nplants.2016.207 PubMedCrossRefGoogle Scholar
  120. Mohammed A, Diab MR, Abd-Alla SMM, Hussien EHA (2015) RNA interference – mediated knockdown of vacuolar ATPase genes in pink bollworm, Pectinophora gossypiella. Int J Biol Pharm Allied Sci 4:2641–2660Google Scholar
  121. Mohr S, Perrimon N (2012) RNAi screening: new approaches, understandings and organisms. Wiley Interdiscip Rev RNA 2:145–158CrossRefGoogle Scholar
  122. Mutti NS, Park Y, Reese JC, Reeck GR (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci 6:1–7. doi: 10.1673/031.006.3801 PubMedCrossRefGoogle Scholar
  123. Mutti NS, Louis J, Pappan LK, Pappan K, Begum K, Chen MS, Park Y, Dittmer N, Marshall J, Reese JC, Reeck GR (2008) A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc Natl Acad Sci U S A 105:9965–9969PubMedPubMedCentralCrossRefGoogle Scholar
  124. Mysore K, Andrews E, Li P, Duman-Scheel M (2014) Chitosan/siRNA nanoparticle targeting demonstrates a requirement for single-minded during larval and pupal olfactory system development of the vector mosquito Aedes aegypti. BMC Dev Biol 14:1. doi: 10.1186/1471-213X-14-9 CrossRefGoogle Scholar
  125. Naito Y, Yamuda T, Mastumiya T, Kumiko UT, Saigo K, Morishita S (2005) dsCheck: highly sensitiveoff-target search software for double-stranded RNA-mediated RNA interference. Nucleic Acids Res 33:W589–W591PubMedPubMedCentralCrossRefGoogle Scholar
  126. Nakamura T, Mito T, Miyawaki K, Ohuchi H, Noji S (2008) EGFR signaling is required for re-establishing the proximodistal axis during distal leg regeneration in the cricket Gryllus bimaculatus nymph. Dev Biol 319:46–55PubMedCrossRefGoogle Scholar
  127. Naranjo SE (2005) Long-term assessment of the effects of transgenic Bt cotton on the abundance of nontarget arthropod natural enemies. Environ Entomol 34:1193–1210CrossRefGoogle Scholar
  128. Nayak A, Tassetto M, Kunitomi M, Andino R (2013) RNA interference-mediated intrinsic antiviral immunity in invertebrates. Curr Top Microbiol Immunol 371:183–200PubMedGoogle Scholar
  129. Osanai-Futahashi M, Tatematsu K-I, Futahashi R, Narukawa J, Takasu Y, Kayukawa T, Shinoda T, Ishige T, Yajima S, Tamura T, Yamamoto K, Sezutsu H (2016) Positional cloning of a Bombyx pink-eyed white egg locus reveals the major role of cardinal in ommochrome synthesis. Heredity 116:135–145. doi: 10.1038/hdy.2015.74 PubMedCrossRefGoogle Scholar
  130. Paim RM, Araujo RN, Lehane MJ, Gontijo NF, Pereira MH (2013) Long-term effects and parental RNAi in the blood feeder, Rhodnius prolixus (Hemiptera; Reduviidae). Insect Biochem Mol Biol 43:1015–1020. doi: 10.1016/j.ibmb.2013.08.008 PubMedCrossRefGoogle Scholar
  131. Palli SR (2012) RNAi methods for management of insects and their pathogens. CAB Rev 7:1–10CrossRefGoogle Scholar
  132. Palli SR (2014) RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Curr Opin Insect Sci 6:1–8. doi: 10.1016/j.cois.2014.09.011 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Pan H, Xu L, Noland JE, Li H, Siegfried BD, Zhou X (2016) Assessment of potential risks of dietary RNAi to a soil micro-arthropod, Sinella curviseta Brook (Collembola: Entomobryidae). Front Plant Sci 7:1028. doi: 10.3389/fpls.2016.01028 PubMedPubMedCentralGoogle Scholar
  134. Perrimon N, Mathey-Prevot B (2007) Applications of high-throughput RNA interference screens to problems in cell and developmental biology. Genetics 175:7–16PubMedPubMedCentralCrossRefGoogle Scholar
  135. Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26(5):611–623PubMedCrossRefGoogle Scholar
  136. Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS One 6:e25709PubMedPubMedCentralCrossRefGoogle Scholar
  137. Pradhan SK, Nayak DK, Mohanty S, Behera L, Barik SR, Pandit E, Lenka S, Anandan A (2015) Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice 8:19. doi: 10.1186/s12284-015-0051-8 PubMedCentralCrossRefGoogle Scholar
  138. Price DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26(7):393–400PubMedCrossRefGoogle Scholar
  139. Pridgeon JW, Zhao L, Becnel JJ, Strickman DA, Clark GG, Linthicum KJ (2008) Topically applied AaeIAP1 double-stranded RNA kills female adults of Aedes aegypti. J Med Entomol 45:414–420PubMedCrossRefGoogle Scholar
  140. Qi XL, Su XF, Lu GQ, Liu CX, Liang GM, Cheng HM (2015) The effect of silencing arginine kinase by RNAi on the larval development of Helicoverpa armigera. Bull Entomol Res 105:555–565. doi: 10.1017/S0007485315000450 PubMedCrossRefGoogle Scholar
  141. Qian D, Tian L, Qu L (2015) Proteomic analysis of endoplasmic reticulum stress responses in rice seeds. Sci Rep 5:14255. doi: 10.1038/srep14255 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Qiu S, Adema CM, Lane T (2005) A computational study of off-target effects of RNA interference. Nucleic Acids Res 33:1834–1847PubMedPubMedCentralCrossRefGoogle Scholar
  143. Quan GX, Kanda T, Tamura T (2002) Induction of the white egg 3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene. Insect Mol Biol 11:217–222PubMedCrossRefGoogle Scholar
  144. Rajagopal S, Sivakumar N, Agrawal P, Malhotra P, Bhatnagar RK (2002) Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J Biol Chem 277:46849–46851PubMedCrossRefGoogle Scholar
  145. Ramon M, Devos Y, Lanzoni A, Liu Y, Gomes A, Gennaro A et al (2014) RNAi-based GM plants: food for thought for risk assessors. Plant Biotechnol J 12:1271–1273. doi: 10.1111/pbi.12305 PubMedCrossRefGoogle Scholar
  146. Rangasamy M, Siegfried BD (2012) Validation of RNA interference in western corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera, Chrysomelidae) adults. Pest Manag Sci 68:587–591. doi: 10.1002/ps.2301 PubMedCrossRefGoogle Scholar
  147. Ratzka C, Gross R, Feldhaa H (2013) Systemic gene knockdown in Camponotus floridanus workers by feeding of dsRNA. Insect Soc 60(4):475–484. doi: 10.1007/s00040-013-0314-6 CrossRefGoogle Scholar
  148. Raybould A (2011) The bucket and the searchlight: formulating and testing risk hypotheses about the weediness and invasiveness potential of transgenic crops. Environ Biosaf Res 9:123–133CrossRefGoogle Scholar
  149. Rinkevich FD, Scott JG (2013) Limitations of RNAi of a6 nicotinic acetylcholine receptor subunits for assessing the in vivo sensitivity to spinosad. Insect Sci 20:101–108PubMedCrossRefGoogle Scholar
  150. Roberts AF, Devos Y, Lemgo GNY, Zhou X (2015) Biosafety research for non-target organism risk assessment of RNAi-based GE plants. Front Plant Sci 6:958. doi: 10.3389/fpls.2015.00958 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Rodrigues TB, Figueira A (2016) Management of insect pest by RNAi – a new tool for crop protection. In: Abdurakhmonov IY (ed) RNA interference. InTech, Croatia. doi: 10.5772/61807 Google Scholar
  152. Rodriguez CL, Trujillo BD, Borras HO, Wright DJ, Ayra-Pardo C (2010) RNAi-mediated knockdown of a Spodoptera frugiperda trypsin-like serine-protease gene reduces susceptibility to a Bacillus thuringiensis Cry1Ca1 protoxin. Environ Microbiol 12:2894–2903. doi: 10.1111/j.1462-2920.2010.02259.x CrossRefGoogle Scholar
  153. Roignant JY, Carré C, Mugat B, Szymczak D, Lepesant JA, Antoniewski C (2003) Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9:299–230PubMedPubMedCentralCrossRefGoogle Scholar
  154. Romeis J, Bartsch D, Bigler F, Candolfi MP, Gielkens MMC et al (2008) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26(2):203–208. doi: 10.1038/nbt1381 PubMedCrossRefGoogle Scholar
  155. Romeis J, Hellmich RL, Candolfi MP, Carstens K, De Schrijver A et al (2011) Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Res 20:1–22. doi: 10.1007/s11248-010-9446-x PubMedCrossRefGoogle Scholar
  156. Romeis J, Raybould A, Bigler F, Candolfi MP, Hellmich RL, Huesing JE, Shelton AM (2013) Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. Chemosphere 90(2013):901–909PubMedCrossRefGoogle Scholar
  157. Rose RI (ed) (2007) White paper on tier-based testing for the effects of proteinaceous insecticidal plant-incorporated protectants on non-target invertebrates for regulatory risk assessment. USDA-APHIS and US Environmental Protection Agency, Washington, DC. http://www.epa.gov/pesticides/biopesticides/pips/non-target-arthropods.pdf Google Scholar
  158. Sadeghi A, van Damme EJM, Smagghe G (2009) Evaluation of the susceptibility of the pea aphid, Acyrthosiphon pisum, to a selection of novel biorational insecticides via artificial diet. J Insect Sci 9:65. http://insectscience.org/9.65 PubMedCentralCrossRefGoogle Scholar
  159. Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H, Siomi MC (2007) Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev 21:1603–1608PubMedPubMedCentralCrossRefGoogle Scholar
  160. Saleh MC, van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH et al (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol 8:793–802. doi: 10.1038/ncbl439 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Sarkies P, Miska EA (2013) Is there social RNA? Science 341(6145):467–468. doi: 10.1126/science.1243175 PubMedCrossRefGoogle Scholar
  162. Schluns H, Crozier RH (2007) Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference. Insect Mol Biol 16:753–759PubMedCrossRefGoogle Scholar
  163. Schnell J, Steele M, Bean J, Neuspiel M, Girard C, Dormann N et al (2015) A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments. Transgenic Res 24:1–17. doi: 10.1007/s11248-014-9843-7 PubMedCrossRefGoogle Scholar
  164. Scott JG, Michel K, Bartholomay LC, Siegfried BD, Hunter WB, Smagghe G, Zhu KY, Douglas AE (2013) Towards the elements of successful insect RNAi. J Insect Physiol 59:1212–1221. doi: 10.1016/j.jinsphys.2013.08.014 PubMedCrossRefGoogle Scholar
  165. Shah C, Förstemann K (2008) Monitoring miRNA mediated silencing in Drosophila melanogaster S2-cells. Biochim Biophys Acta 1779:766–772PubMedCrossRefGoogle Scholar
  166. Shakesby A, Wallace I, Isaacs H, Pritchard J, Roberts D, Douglas A (2009) A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem Mol Biol 39:1–10. doi: 10.1016/j.ibmb.2008.08.008 PubMedCrossRefGoogle Scholar
  167. Shukla JN, Kalsi M, Sethi A, Narva KE, Fishilevich E, Singh S et al (2016) Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol 13(7):656–669. doi: 10.1080/15476286.2016.1191728 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RH, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476PubMedCrossRefGoogle Scholar
  169. Singh AD, Wong S, Ryan CP, Whyard S (2013) Oral delivery of double stranded RNA in larvae of the yellow fever mosquito, Aedes aegypti: implications for pest mosquito control. J Insect Sci 13:1–18CrossRefGoogle Scholar
  170. Siomi H, Siomi MC (2009) On the road to reading the RNA-interference code. Nature 457:396–404PubMedCrossRefGoogle Scholar
  171. Sivakumar S, Rajagopal R, Venkatesh GR, Srivastava A, Bhatnagar RK (2007) Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. J Biol Chem 282:7312–7319PubMedCrossRefGoogle Scholar
  172. Smith P (2013) Delivering food security without increasing pressure on land. Glob Food Sec 2(1):18–23CrossRefGoogle Scholar
  173. Soares CAG, Lima CMR, Dolan MC, Piesman J, Beard CB, Zeidner NS (2005) Capillary feeding of specific dsRNA induces silencing of the isac gene in nymphal Ixodes scapularis ticks. Insect Mol Biol 14:443–452PubMedCrossRefGoogle Scholar
  174. Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW, Huckaba RM (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103(4):1031–1038PubMedCrossRefGoogle Scholar
  175. Sugimoto A (2004) High-throughput RNAi in Caenorhabditis elegans, genome-wide screens and functional genomics. Differentiation 72:81–91PubMedCrossRefGoogle Scholar
  176. Sun K, Wolters AMA, Loonen AEHM, Huibers RP, van der Vlugt R, Goverse A, Jacobsen E, Visser RGF, Bai Y (2016) Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew. Transgenic Res 25:123–138. doi: 10.1007/s11248-015-9921-5 PubMedCrossRefGoogle Scholar
  177. Surakasi VP, Mohamed AAM, Kim Y (2011) RNA interference of beta 1 integrin subunit impairs development and immune responses of the beet armyworm, Spodoptera exigua. J Insect Physiol 57:1537–1544PubMedCrossRefGoogle Scholar
  178. Suzuki Y, Truman JW, Riddiford LM (2008) The role of Broad in the development of Tribolium castaneum: implications for the evolution of the holometabolous insect pupa. Development 135:569–577. doi: 10.1242/dev.015263 PubMedCrossRefGoogle Scholar
  179. Swevers L, Smagghe G (2012 ) Use of RNAi for control of insect crop pests. In: Smagghe G, Diaz I, editors. Arthropod-plant interactions: novel insights and approaches for IPM. Dordrecht: Springer; pp. 177–197.CrossRefGoogle Scholar
  180. Swevers L, Broeck JV, Smagghe G (2013) The possible impact of persistent virus infection on the function of the RNAi machinery in insects: a hypothesis. Front Physiol 4:319. doi: 10.3389/fphys.2013.00319 PubMedPubMedCentralCrossRefGoogle Scholar
  181. Szittya G, Burgyan J (2013) RNA interference-mediated intrinsic antiviral immunity in plants. Curr Top Microbiol Immunol 371:153–181PubMedGoogle Scholar
  182. Tabara H, Grishok A, Mello CC (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282:430–431PubMedCrossRefGoogle Scholar
  183. Tabashnik BE, Thierry B, Yves C (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521PubMedCrossRefGoogle Scholar
  184. Tan EL, Tan TM, Chow VTK, Poh CL (2008) Inhibition of enterovirus 71 in virus-infected mice by RNA interference. Mol Ther 15:1931–1938CrossRefGoogle Scholar
  185. Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S et al (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57(2):231–245. doi: 10.1016/j.jinsphys.2010.11.006 PubMedCrossRefGoogle Scholar
  186. Thakur N, Upadhyay SK, Verma PC, Chandrashekar K, Tuli R, Singh PK (2014) Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase a gene. PLoS One 9:88. doi: 10.1371/journal.pone.0087235 Google Scholar
  187. Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B et al (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 4(7):e6225. doi: 10.1371/journal.pone.0006225 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Timmon L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854CrossRefGoogle Scholar
  189. Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112PubMedCrossRefGoogle Scholar
  190. Tomizawa M, Noda H (2013) High mortality caused by high dose of dsRNA in the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae). Appl Entomol Zool 48:553–559CrossRefGoogle Scholar
  191. Tomoyasu Y, Denell RE (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 214:575–578PubMedCrossRefGoogle Scholar
  192. Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D et al (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10. doi: 10.1186/gb-2008-9-1-r10 PubMedPubMedCentralCrossRefGoogle Scholar
  193. Torres JB, Ruberson JR (2005) Canopy- and ground- dwelling predatory arthropods in commercial Bt and non-Bt cotton fields: patterns and mechanisms. Environ Entomol 34:1242–1256Google Scholar
  194. Torres JB, Ruberson JR (2007) Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields. Ann Appl Biol 150:27–39CrossRefGoogle Scholar
  195. Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391PubMedCrossRefGoogle Scholar
  196. Ulrich J, Dao VA, Majumdar U, Schmitt-Engel C, Schwirz J, Schultheis D et al (2015) Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target. BMC Genomics 16:674. doi: 10.1186/s12864-015-1880-y PubMedPubMedCentralCrossRefGoogle Scholar
  197. Ulvila J, Parikka M, Kleino A, Sormunen R, Ezekowitz RA, Kocks C et al (2006) Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J Biol Chem 281:14370–14375. doi: 10.1074/jbc.M513868200 PubMedCrossRefGoogle Scholar
  198. Upadhyay SK, Chandrashekar K, Thakur N, Verma PC, Borgio JF, Singh PK et al (2011) RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. J Biosci 36:153–161. doi: 10.1007/s12038-011-9009-1 PubMedCrossRefGoogle Scholar
  199. US EPA (2007) White paper on tier-based testing for the effects of proteinaceous insecticidal plant-incorporated protectants on non-target arthropods for regulatory risk assessments. United States Environmental Protection Agency, Washington, DCGoogle Scholar
  200. US EPA (2014) Scientific advisory panel minutes No. 2014-02 (Arlington, VA), 1–77. Available online at: http://www.epa.gov/scipoly/sap/meetings/2014/january/012814minutes.pdf
  201. Valdes VJ, Sampieri A, Sepulveda J, Vaca L (2003) Using double-stranded RNA to prevent in vitro and in vivo viral infections by recombinant baculovirus. J Biol Chem 278:19317–19324PubMedCrossRefGoogle Scholar
  202. Valdes VJ, Athie A, Salinas LS, Navarro RE, Vaca L (2012) Correction: CUP-1 is a novel protein involved in dietary cholesterol uptake in Caenorhabditis elegans. PLoS One 7(8). doi: 10.1371/annotation/5a203055-6c15-43b0-96ad-0fbd5eb9b810
  203. Vélez AM, Fishilevich E, Matz N, Storer NP, Narva KE, Siegfried BD (2017) Parameters for successful parental RNAi as an insect pest management tool in western corn rootworm, Diabrotica virgifera virgifera. Genes 8:7. doi: 10.3390/genes8010007 CrossRefGoogle Scholar
  204. Vijayendran D, Airs PM, Dolezal K, Bonning BC (2013) Arthropod viruses and small RNAs. J Invertebr Pathol 114(2):186–195PubMedCrossRefGoogle Scholar
  205. Walker WB, Allen ML (2011) RNA interference-mediated knockdown of IAP in Lygus lineolaris induces mortality in adult and preadult life stages. Entomol Exp Appl 138:83–92. doi: 10.1111/j.1570-7458.2010.01078.x CrossRefGoogle Scholar
  206. Wang Y, Zhang H, Li H, Miao X (2011) Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS One 6:e18644PubMedPubMedCentralCrossRefGoogle Scholar
  207. Whangbo JS, Hunter CP (2008) Environmental RNA interference. Trends Genet 24(6):297–305. doi: 10.1016/j.tig.2008.03.007 PubMedCrossRefGoogle Scholar
  208. Whitten MMA, Facey PD, Del Sol R, Fernández-Martínez LT, Evans MC, Mitchell JJ et al (2016) Symbiont-mediated RNA interference in insects. Proc Biol Sci 283:20160042. doi: 10.1098/rspb.2016.0042 PubMedPubMedCentralCrossRefGoogle Scholar
  209. Whyard S, Singh AD, Wong S (2009) Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol 39:824–832. doi: 10.1016/j.ibmb.2009.09.007 PubMedCrossRefGoogle Scholar
  210. Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295:2456–2459. doi: 10.1126/science.1068836 PubMedCrossRefGoogle Scholar
  211. Wu F, Wang PY, Zhao QL, Kang LQ, Xia DG, Qiu ZY, Tang SM, Li MW, Shen XJ, Zhang GZ (2016) Mutation of a cuticle protein gene, BmCPG10, is responsible for silkworm non-moulting in the 2nd instar mutant. PLoS One 11:88. doi: 10.1371/journal.pone.0153549 Google Scholar
  212. Wuriyanghan H, Rosa C, Falk BW (2011) Oral delivery of double-stranded RNAs and siRNAs induces RNAi effects in the potato/tomato psyllid, Bactericerca cockerelli. PLoS One 6:e27736PubMedPubMedCentralCrossRefGoogle Scholar
  213. Xiong Y, Zeng H, Zhang Y, Xu D, Qiu D (2013) Silencing the HaHR3 Gene by transgenic plant-mediated RNAi to disrupt Helicoverpa armigera development. Int J Biol Sci 9:370–381. doi: 10.7150/ijbs.5929 PubMedPubMedCentralCrossRefGoogle Scholar
  214. Xu J, Wang X-F, Chen P, Liu FT, Zheng SC, Ye H, Mo MH (2016) RNA interference in moths: mechanisms, applications and progress. Genes 7:88. doi: 10.3390/genes7100088 PubMedCentralCrossRefGoogle Scholar
  215. Xu W, Han Z (2008) Cloning and phylogenetic analysis of sid-1-like genes from aphids. J Insect Sci 8:30. doi: 10.1673/031.008.3001 PubMedCentralCrossRefGoogle Scholar
  216. Xue XY, Mao YB, Tao XY, Huang YP, Chen XY (2012) New approaches to agricultural insect pest control based on RNA interference. Adv Insect Physiol 42:73–117CrossRefGoogle Scholar
  217. Yan T, Chen H, Sun Y, Yu X, Xia L (2016) RNA interference of the ecdysone receptor genes EcR and USP in grain aphid (Sitobion avenae F.) affects its survival and fecundity upon feeding on wheat plants. Davies TGE, ed. Int J Mol Sci 17(12):2098. doi: 10.3390/ijms17122098 PubMedCentralCrossRefGoogle Scholar
  218. Yang C, Preisse EL, Zhang H, Liu Y, Dai L, Pan H, Pan H, Zhou X (2016) Selection of reference genes for RT-qPCR analysis in Coccinella septempunctata to assess un-intended effects of RNAi transgenic plants. Front Plant Sci 7:1672. doi: 10.3389/fpls.2016.01672 PubMedPubMedCentralGoogle Scholar
  219. Yang J, Han ZJ (2014) Efficiency of different methods for dsRNA delivery in cotton bollworm (Helicoverpa armigera). J Integr Agric 13:115–123. doi: 10.1016/S2095-3119(13)60511-0 CrossRefGoogle Scholar
  220. Yao J, Rotenberg D, Afsharifar A, Barandoc AK, Whitfield AE (2013) Development of RNAi methods for Peregrinus maidis, the corn planthopper. PLoS One 8:e70243PubMedPubMedCentralCrossRefGoogle Scholar
  221. Yu N, Christiaens O, Liu JM, Niu J, Cappelle K, Caccia S, Huvenne H, Smagghe G (2013) Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci 20:4–14PubMedCrossRefGoogle Scholar
  222. YuQ LT, Feng G, Yang K, Pang Y (2008) Functional analysis of the putative antiapoptotic genes, p49 and iap4, of Spodoptera litura nucleopolyhedrovirus with RNAi. J Gen Virol 89:1873–1880CrossRefGoogle Scholar
  223. Zamore PD (2001) RNA interference: listening to the sound of silence. Nat Struct Mol Biol 8(9):746–750CrossRefGoogle Scholar
  224. Zeynep A, Horn T, Boutros M (2005) E-RNAi: a web application to design optimized RNAi constructs. Nucleic Acids Res 33:W582–W588. doi: 10.1093/nar/gki468. Web Server issueCrossRefGoogle Scholar
  225. Zha W, Peng X, Chen R, Du B, Zhu L, He G (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One 6(5):e20504. doi: 10.1371/journal.pone.0020504 PubMedPubMedCentralCrossRefGoogle Scholar
  226. Zhang H, Li FL, Cheng C, Jiao DX, Zhou Z, Cheng LG (2013) The identification and characterisation of a new deltamethrin resistance-associated gene, UBL40, in the diamondback moth, Plutella xylostella (L). Gene 530:51–56. doi: 10.1016/j.gene.2013.07.075 PubMedCrossRefGoogle Scholar
  227. Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19:683–693PubMedCrossRefGoogle Scholar
  228. Zhang X, Mysore K, Flannery E, Michel K, Severson DW, Zhu KY et al (2015) Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae. J Vis Exp 97:52523. doi: 10.3791/52523 Google Scholar
  229. Zhang Y, Wiggins B, Lawrence C, Petrick J, Ivashuta S, Heck G (2012) Analysis of plant derived miRNAs in animal small RNA datasets. BMC Genomics 13:381PubMedPubMedCentralCrossRefGoogle Scholar
  230. Zhao HM, Yi X, Hu Z, Chen SH, Dong XL, Gong L (2013) RNAi-mediated knockdown of catalase causes cell cycle ar rest in SL-1 cells and results in low survival rate of Spodoptera litura (Fabricius). PLoS One 8:e59527PubMedPubMedCentralCrossRefGoogle Scholar
  231. Zhao YY, Yang G, Wang-PG YMS (2008) Phyllotreta striolata (Coleoptera: Chrysomelidae): arginine kinase cloning and RNAi-based pest control. Eur J Entomol 105:815–822CrossRefGoogle Scholar
  232. Zhou XG, Wheeler MM, Oi FM, Scharf ME (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 38:805–815. doi: 10.1016/j.ibmb.2008.05.005 PubMedCrossRefGoogle Scholar
  233. Zhu F, Xu J, Palli R, Ferguson J, Palli SR (2011) Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag Sci 67:175–182. doi: 10.1002/ps.2048 PubMedCrossRefGoogle Scholar
  234. Zhu F, Cui Y, Walsh DB, Lavine LC (2014) Application of RNA interference toward insecticide resistance management. In: Chandrasekar R, Tyagi BK, Gui ZZ, Reeck GR (eds) Short views on insect biochemistry and molecular biology, vol 2. International Book Mission, Academic, Manhattan, pp 595–619. Chapter-27Google Scholar
  235. Zhu J-Q, Liu S, Ma Y, Zhang J-Q, Qi H-S, Wei Z-J et al (2012) Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR. PLoS One 7:e38572. doi: 10.1371/journal.pone.0038572 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Leela Alamalakala
    • 1
  • Srinivas Parimi
    • 1
  • Navid Patel
    • 1
  • Bharat Char
    • 1
  1. 1.Maharashtra Hybrid Seeds Company Private LimitedJalnaIndia

Personalised recommendations