Advertisement

Dynamic Visualization of Transit Information Using Genetic Algorithms for Path Schematization

  • Marcelo Galvao
  • Francisco Ramos
  • Marcus Lamar
  • Pastor Taco
Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

In this paper, we present a genetic algorithm for path octilinear simplification. The octilinear layout, recognized worldwide in metro maps, has the special property that edge orientations are restricted to eight angles. The proposed search technique combines possible solutions to find a solution with a desired balance between faithfulness to the original shape and reduction of bends along the path. We also aim the genetic algorithm to real-time response for dynamic web visualizations so we can experiment on how algorithms for the visualization of schematic maps can be availed in a context of mobile web devices in order to empower efficiency in transmitting transit and navigation information. A prototype of a web application and real transit data of the city of Castellón in Spain were used to test the methodology. The results have shown that real-time schematizations open possibilities concerning usability that add extra value to schematic transit maps. Additionally, performance tests show that the proposed genetic algorithms, if combined with topological data and scale variation transformation, are adequate to sketch bus transit maps automatically in terms of efficiency.

Keywords

Transit map Schematic generalization Octilinear graph Genetic algorithm Digital map Web visualization Public transportation 

Notes

Acknowledgements

Paper produced as a result of the dissertation submitted for the Degree of MSc in Geospatial Technology. Work supported by grant H2020-EU.1.1.—EXCELLENT SCIENCE—European Research Council (ERC).

References

  1. Allard, J. (2009). The design of public transport maps. Doctor thesis. Politecnico di Milano.Google Scholar
  2. Anand, S., Avelar, S., Ware, J. M., & Jackson, M. (2007). Automated schematic map production using simulated annealing and gradient descent approaches. GISRUK (pp. 414–419). Citeseer.Google Scholar
  3. Avelar, S. (2002). Schematic maps on demand: Design, modeling and visualization. PHD Thesis. Technische Wissenschaften ETH Zürich.Google Scholar
  4. Galvao, M. D., Lamar, M. V., & Taco, P. W. (2014). Desenho automático de mapas octalineares de rede de transporte pú}blico utilizando algoritmo genético. TRANSPORTES, 21–30.Google Scholar
  5. Hong, S.-H., Merrick, D., & Do Nascimento, H. (2004). The metro map layout problem. International Symposium on Graph Drawing (pp. 482–491). Berlin: Springer.Google Scholar
  6. Li, Z., & Dong, W. (2010). A stroke-based method for automated generation of schematic network maps. International Journal of Geographical Information Science, 24(11), 1631–1647.CrossRefGoogle Scholar
  7. Nöllenburg, M. (2005). Automated drawing of metro maps. Technical Report 2005–25. Universitätt Karlsruhe, Fakultät für Informatik.Google Scholar
  8. Nöllenburg, M. (2014). A survey on automated metro map layout methods. ITI Wagner, Department of Informatics, Karlsruhe Institute of Technology (KIT), Tech. Rep.Google Scholar
  9. Nollenburg, M., & Wolff, A. (2011). Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Transactions on Visualization and Computer Graphics, 7(5), 626–641.CrossRefGoogle Scholar
  10. Oke, O., & Siddiqui, S. (2015). Efficient automated schematic map drawing using multiobjective mixed integer programming. Computers & Operations Research, 61, 1–17.Google Scholar
  11. São Paulo Transporte. (2016, January 25). Indicadores. Retrieved from SPTrans: http://www.sptrans.com.br/indicadores/
  12. Sarkar, M., & Brown, M. H. (1994). Graphical fisheye views. Communications of the ACM, 37(12), 73–83.CrossRefGoogle Scholar
  13. Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information visualizations. In Proceedings, IEEE Symposium on Visual Languages (pp. 336–343). IEEE.Google Scholar
  14. Ti, P., & Li, Z. (2014). Generation of schematic network maps with automated detection and enlargement of congested areas. International Journal of Geographical Information Science, 28(3), 521–540.CrossRefGoogle Scholar
  15. Wang, Y.-S., & Chi, M.-T. (2011). Focus + context metro maps. Transactions on Visualization and Computer Graphics, 17(12), 2528–2535.CrossRefGoogle Scholar
  16. Wolff, A. (2007). Drawing subway maps: A survey. Informatik-Forschung und Entwicklung, 22, 23–44.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Marcelo Galvao
    • 1
  • Francisco Ramos
    • 2
  • Marcus Lamar
    • 3
  • Pastor Taco
    • 4
  1. 1.Institute for GeoinformaticsUniversity of MünsterMünsterGermany
  2. 2.Institute of New Imaging TechnologiesJaume I UniversityCastellónSpain
  3. 3.Departamento de Ciência da ComputaçãoUniversity of BrasíliaBrasíliaBrazil
  4. 4.Programa de Pós-Graduação em TransportesUniversity of BrasíliaBrasíliaBrazil

Personalised recommendations