Advertisement

A Hybrid ADC for High Resolution: The Zoom ADC

  • Burak Gönen
  • Fabio Sebastiano
  • Robert van Veldhoven
  • Kofi A. A. Makinwa
Chapter

Abstract

This paper presents a dynamic zoom ADC for audio applications. It achieves 109-dB DR, 106-dB SNR, and 103-dB SNDR in a 20-kHz bandwidth, while dissipating 1.12 mW and occupying only 0.16 mm2 in 0.16-μm CMOS. This translates to state-of-the-art energy and area efficiency. In this paper, the system- and circuit-level design of the ADC will be presented.

References

  1. 1.
    Chae, Y., Souri, K., Makinwa, K.A.A.: A 6.3 μW 20 bit incremental zoom ADC with 6 ppm INL and 1 μV offset. IEEE J. Solid State Circuits. 48(12), 3019–3027 (2013)CrossRefGoogle Scholar
  2. 2.
    Sechang, Oh., Jung, W., Yang, K., Blaauw, D., Sylvester, D.: 15.4b incremental sigma-delta capacitance-to-digital converter with zoom-in 9b asynchronous SAR. 2014 Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, pp. 1–2 (2014)Google Scholar
  3. 3.
    Venca, A., Ghittori, N., Bosi, A., Nani, C.: A 0.076 mm2 12 b 26.5 mW 600 MS/s 4-way interleaved subranging SAR- ΔΣ ADC with on-chip buffer in 28 nm CMOS. IEEE J. Solid State Circuits. 51(12), 2951–2962 (2016)CrossRefGoogle Scholar
  4. 4.
    Shu, Y.S., Kuo, L.T., Lo, T.Y.: An oversampling SAR ADC with DAC mismatch error shaping achieving 105-dB SFDR and 101-dB SNDR over 1 kHz BW in 55 nm CMOS. IEEE J. Solid State Circuits. 51(12), 2928–2940 (2016)CrossRefGoogle Scholar
  5. 5.
    Dong, Y., Yang, W., Schreier, R., Sheikholeslami, A., Korrapati, S.: A continuous-time 0–3 MASH ADC achieving 88-dB DR with 53 MHz BW in 28 nm CMOS. IEEE J. Solid State Circuits. 49(12), 2868–2877 (2014)CrossRefGoogle Scholar
  6. 6.
    Gharbiya, A., Johns, D.A.: A 12-bit 3.125 MHz bandwidth 0–3 MASH Delta-sigma modulator. IEEE J. Solid State Circuits. 44(7), 2010–2018 (2009)CrossRefGoogle Scholar
  7. 7.
    Liu, C.C., Huang, M.C., Tu, Y.H.: A 12 bit 100 MS/s SAR-assisted digital-slope ADC. IEEE J. Solid State Circuits. 51(12), 2941–2950 (2016)CrossRefGoogle Scholar
  8. 8.
    Sanyal A., Sun N.: A 18.5-fJ/step VCO-based 0–1 MASH ΔΣ ADC with digital background calibration. 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, pp. 1–2 (2016)Google Scholar
  9. 9.
    van der Goes, F., Ward, C., Astgimath, S., Yan, H., Riley, J., Mulder, J., Wang, S., Bult, K.: 11.4 A 1.5-mW 68-dB SNDR 80-MS/s 2x interleaved SAR assisted pipelined ADC in 28nm CMOS. Proc. IEEE International Solid-State Circuits Conference, San Francisco, pp. 200–201 (2014)Google Scholar
  10. 10.
    Gönen, B., Sebastiano, F., van Veldhoven, R., Makinwa, K.A.A.: A 1.65mW 0.16mm2 dynamic zoom ADC with 107.5dB DR in 20kHz BW. 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, pp. 282–283 (2016)Google Scholar
  11. 11.
    Gönen, B., Sebastiano, F., Quan, R., van Veldhoven, R., Makinwa, K.A.A.: A dynamic zoom ADC with 109-dB DR for audio applications. IEEE J. Solid-State Circuits, (accepted for publication)Google Scholar
  12. 12.
    Schreier, R., Temes, G.C.: Understanding Delta-Sigma Data Converters. John Wiley and Sons, Hoboken (2005)Google Scholar
  13. 13.
    Murmann, B.: A/D converter trends: power dissipation, scaling and digitally assisted architectures. 2008 IEEE Custom Integrated Circuits Conference, San Jose, pp. 105–112 (2008)Google Scholar
  14. 14.
    Murmann, B.: ADC Performance survey 1997–2016. [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html
  15. 15.
    Pelgrom, M.J.M.: Analog-to-Digital Conversion. Springer, Cham (2017)CrossRefGoogle Scholar
  16. 16.
    Chae, Y., Han, G.: Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator. IEEE J. Solid State Circuits. 44(2), 458–472 (2009)CrossRefGoogle Scholar
  17. 17.
    Christen, T.: A 15-bit 140-μW scalable-bandwidth inverter-based ΔΣ modulator for a MEMS microphone with digital output. IEEE J. of Solid-State Circuits. 48(7), 1605–1614 (2013)CrossRefGoogle Scholar
  18. 18.
    Lee, S., Jo, W., Song, S., Chae, Y.: A 300-μW audio ΔΣ modulator with 100.5-dB DR using dynamic bias inverter. IEEE Trans. Circuits Syst. I, Reg Papers. 63(11), 1866–1875 (Nov. 2016)CrossRefGoogle Scholar
  19. 19.
    Steiner, M., Greer, N.: 15.8 A 22.3b 1kHz 12.7mW switched-capacitor ΔΣ modulator with stacked split-steering amplifiers. 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, pp. 284–286 (2016)Google Scholar
  20. 20.
    van Veldhoven, R.H.M., van Roermund, A.H.M.: Robust Sigma Delta Converters. Springer, Dordrecht (2017)Google Scholar
  21. 21.
    van Veldhoven, R.H.M., Rutten, R., Breems, L.J.: An inverter-based hybrid ΔΣ modulator. 2008 IEEE International Solid-State Circuits Conference – Digest of Technical Papers, San Francisco, pp. 492–630 (2008)Google Scholar
  22. 22.
    van Veldhoven, R.H.M, Nizza, N., Breems, L.J.: Technology portable, 0.04mm2, Ghz-rate ΔΣ modulators in 65nm and 45nm CMOS. 2009 Symposium on VLSI Circuits, Kyoto, pp. 72–73 (2009)Google Scholar
  23. 23.
    Souri, K., Chae, Y., Makinwa, K.A.A.: A CMOS temperature sensor with a voltage-calibrated inaccuracy of ± 0.15°C (3σ) from −55°C to 125°C. IEEE J. Solid State Circuits. 48(1), 292–301 (2013)CrossRefGoogle Scholar
  24. 24.
    De Berti, C., Malcovati, P., Crespi, L., Baschirotto, A.: A 106-dB A-weighted DR low-power continuous-time ΔΣ modulator for MEMS microphones. IEEE J. Solid State Circuits. 51(7), 1607–1618 (2016)CrossRefGoogle Scholar
  25. 25.
    Billa, S., Sukumaran, A., Pavan, S.: A280-μW 24-kHz-BW 98.5dB-SNDR chopped single-bit CT ΔΣM achieving <10-Hz 1/f noise corner without chopping artifacts. 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, pp. 276–277 (2016)Google Scholar
  26. 26.
    Leow, Y.H., Tang, H., Sun, Z.C., Siek, L.: A 1 V 103-dB 3rd-order audio continuous-time ΔΣ ADC with enhanced noise shaping in 65 nm CMOS. IEEE J. Solid State Circuits. 51(11), 2625–2638 (2016)CrossRefGoogle Scholar
  27. 27.
    Lo, T.Y.: A 102dB dynamic range audio sigma-delta modulator in 40nm CMOS. 2011 IEEE Asian Solid State Circuits Conference (A-SSCC), Jeju, pp. 257–260 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Burak Gönen
    • 1
  • Fabio Sebastiano
    • 1
  • Robert van Veldhoven
    • 2
  • Kofi A. A. Makinwa
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.NXP SemiconductorsEindhovenThe Netherlands

Personalised recommendations