Advertisement

Advanced Modelling Techniques for Flexible Robotic Systems

  • Mariapaola D’Imperio
  • Cristiano Pizzamiglio
  • Daniele Ludovico
  • Darwin G. Caldwell
  • Giancarlo Genta
  • Ferdinando Cannella
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 49)

Abstract

The purpose of this paper is to present a 3 DoF underactuated mechanism with one flexible component. It is called FLEGX (FLEXible LEG) and it would be the first step in the design of a jumping humanoid robot with flexible limbs. An early system-level design validation of the FLEGX mechanical configuration was performed using the software MSC.Nastran\(^{\circledR }\) and MSC.Adams\(^{\circledR }\)-Matlab/Simulink\(^{\circledR }\) integrated environment.

Keywords

Flexible robotic leg Multi-body analysis Jumping robot 

Notes

Acknowledgement

The authors want to thank the company “MCS II MOLLIFICIO S.R.L.” for providing free flexible links.

References

  1. 1.
    Malone R (2004) Ultimate robot. DK Publishing, LondonGoogle Scholar
  2. 2.
    Johnson M et al (2015) Team ihmc’s lessons learned from the darpa robotics challenge trials. J Field Robot 32(2):192–208CrossRefMathSciNetGoogle Scholar
  3. 3.
    Mason MT, Salisbury JK Jr (1985) Robot hands and the mechanics of manipulationGoogle Scholar
  4. 4.
    Pratt GA et al (1997) Stiffness isn’t everything. In: Khatib O, Salisbury JK (eds) Experimental robotics IV. LNCIS. Springer, Berlin, pp 253–262CrossRefGoogle Scholar
  5. 5.
    Kimura H, Fukuoka Y (2004) Biologically inspired adaptive dynamic walking in outdoor environment using a self-contained quadruped robot: ‘tekken2’. In: Proceedings of 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS 2004), vol 1. IEEE, pp 986–991Google Scholar
  6. 6.
    Malzahn J (2014) Modeling and control of multi-elastic-link robots under gravity: from oscillation damping and position control to physical interaction. VDIGoogle Scholar
  7. 7.
    Howell LL (2001) Compliant mechanisms. Wiley, HobokenGoogle Scholar
  8. 8.
    D’Imperio M et al (2014) Modelling legged robot multi-body dynamics using hierarchical virtual prototype design. Lecture Notes in Computer Science (LNAI), vol 8608, pp 59–71Google Scholar
  9. 9.
    D’Imperio M et al (2015) Dynamic analysis using numerical multi-body approach for quadruped robots. In: Thematic conference on multibody dynamics ECCOMAS. IEEEGoogle Scholar
  10. 10.
    Chase RP Jr et al (2011) A 3-d chain algorithm with pseudo-rigid-body model elements. Mech Based Des Struct Mach 39(1):142–156CrossRefGoogle Scholar
  11. 11.
    Howell LL (1991) The design and analysis of large-deflection members in compliant mechanisms. PhD dissertationGoogle Scholar
  12. 12.
    Semini C (2010) HyQDesign and development of a hydraulically actuated quadruped robot. Doctor of Philosophy (PhD), University of Genoa, ItalyGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mariapaola D’Imperio
    • 1
  • Cristiano Pizzamiglio
    • 2
  • Daniele Ludovico
    • 2
  • Darwin G. Caldwell
    • 1
  • Giancarlo Genta
    • 2
  • Ferdinando Cannella
    • 1
  1. 1.ADVRIstituto Italiano di TecnologiaGenovaItaly
  2. 2.DIMEASPolitecnico di TorinoTorinoItaly

Personalised recommendations