Advertisement

Watermarking Cryptographic Programs

  • Ryo Nishimaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10311)

Abstract

Digital watermarking embeds unremovable information called a “mark” into digital objects such as images, video, audio files, and program data without changing their functionalities. This article provides a brief overview of recent advances in watermarking for cryptographic programs and insights behind them.

Keywords

Program watermarking Obfuscation 

Notes

Acknowledgments

The author would like to thank Pooya Farshim for invaluable and constructive comments.

References

  1. 1.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi: 10.1007/3-540-44647-8_1 CrossRefGoogle Scholar
  2. 2.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately. Cryptology ePrint Archive, Report 2015/1167 (2015). http://eprint.iacr.org/2015/1167
  4. 4.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-42045-0_15 CrossRefGoogle Scholar
  5. 5.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54631-0_29 CrossRefGoogle Scholar
  6. 6.
    Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 1115–1127. ACM Press, New York (2016)Google Scholar
  7. 7.
    Galbraith, S.D., Verheul, E.R.: An analysis of the vector decomposition problem. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 308–327. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78440-1_18 CrossRefGoogle Scholar
  8. 8.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013Google Scholar
  9. 9.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hopper, N., Molnar, D., Wagner, D.: From weak to strong watermarking. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 362–382. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70936-7_20 CrossRefGoogle Scholar
  11. 11.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 669–684. ACM Press, New York (2013)Google Scholar
  12. 12.
    Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_20 CrossRefGoogle Scholar
  13. 13.
    Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS, pp. 11–20. IEEE Computer Society Press, Washington, D.C. (2016)Google Scholar
  14. 14.
    Nishimaki, R.: How to watermark cryptographic functions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 111–125. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38348-9_7 CrossRefGoogle Scholar
  15. 15.
    Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85538-5_4 CrossRefGoogle Scholar
  16. 16.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_11 CrossRefGoogle Scholar
  17. 17.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press, New York (2014)Google Scholar
  18. 18.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03356-8_36 CrossRefGoogle Scholar
  19. 19.
    Yoshida, M., Fujiwara, T.: Toward digital watermarking for cryptographic data. IEICE Trans. 94-A(1), 270–272 (2011)Google Scholar
  20. 20.
    Yoshida, M., Mitsunari, S., Fujiwara, T.: The vector decomposition problem. IEICE Trans. 93-A(1), 188–193 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Secure Platform LaboratoriesNTT CorporationTokyoJapan

Personalised recommendations