Advertisement

Optical Imaging in Oral Oncology

  • Prashanth PantaEmail author
  • Laurie J. Rich
  • Mukund Seshadri
Chapter

Abstract

There has been widespread interest in the application of simple light-based methods and optical imaging as adjunctive tools in oral oncology. These optical imaging techniques exploit differences in properties such as absorption, reflectance, and light scattering between normal and transformed epithelium. Optical imaging methods can also utilize tissue autofluorescence arising from endogenous chromatophores to detect malignant tissue. For example, early oral malignancy is often associated with a loss of fluorescence or fluorescence visualization loss (FVL) which may be used to aid in tissue selection for biopsy. The autofluorescence-based Visual Enhanced Light scope (VELscope®), chemiluminescence-based ViziLite® system, the Identafi® system that uses multispectral fluorescence and reflectance, and narrow band imaging (NBI) instruments are among the optical imaging-based diagnostic platforms that are currently available for clinical use. In addition, photoacoustic imaging (PAI) is an advanced hybrid imaging method that allows for deep tissue imaging and is actively being evaluated for diagnostic applications in oncology. In this chapter, we will review the basics of these optical imaging methods and summarize preclinical and clinical evidence on their performance in oral oncology. The goal of this chapter is to provide the reader with an overview of these methods and their potential clinical applications.

Keywords

Oral cancer Light-based detection Fluorescence visualization loss Narrow band imaging Photoacoustic imaging 

Notes

Acknowledgments

Support from R01CA204636, R01DE024595, S10OD010393-01, and P30CA06156 is gratefully acknowledged.

References

  1. 1.
    Utzinger U, Bueeler M, Oh S, Heintzelman DL, Svistun ES, Abd-El-Barr M, et al. Optimal visual perception and detection of oral cavity neoplasia. IEEE Trans Biomed Eng. 2003;50:396–9.CrossRefGoogle Scholar
  2. 2.
    Lane PM, Gilhuly T, Whitehead P, Zeng H, Poh CF, Ng S, et al. Simple device for the direct visualization of oral-cavity tissue fluorescence. J Biomed Opt. 2006;11:024006.CrossRefGoogle Scholar
  3. 3.
    Laronde DM, Williams PM, Hislop TG, Poh C, Ng S, Bajdik C, et al. Influence of fluorescence on screening decisions for oral mucosal lesions in community dental practices. J OralPathol Med. 2014;43:7–13.CrossRefGoogle Scholar
  4. 4.
    Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A. 2007;104:19494–9. Epub 2007 Nov 27CrossRefGoogle Scholar
  5. 5.
    Arifler D, Pavlova I, Gillenwater A, Richards-Kortum R. Light scattering from collagen Fiber networks: micro-optical properties of normal and neoplastic Stroma. Biophys J. 2007;92:3260–74.CrossRefGoogle Scholar
  6. 6.
    Pavlova I, Weber CR, Schwarz RA, Williams MD, Gillenwater AM, Richards-Kortum R. Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties. J Biomed Opt. 2009;14:014009.CrossRefGoogle Scholar
  7. 7.
    Pavlova I, Williams M, El-Naggar A, Richards-Kortum R, Gillenwater A. Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue. Clin Cancer Res. 2008;14:2396–404.CrossRefGoogle Scholar
  8. 8.
    Lane P, Lam S, Follen M, MacAulay C. Oral fluorescence imaging using 405-nm excitation, aiding the discrimination of cancers and precancers by identifying changes in collagen and elastic breakdown and neovascularization in the underlying stroma. Gend Med. 2012; 9: S78–82.e1–8.Google Scholar
  9. 9.
    Poh CF, Zhang L, Anderson DW, Durham JS, Williams PM, Priddy RW, et al. Fluorescence visualization detection of field alterations in tumor margins of oral cancer patients. Clin Cancer Res. 2006;12:6716.CrossRefGoogle Scholar
  10. 10.
    Shin D, Vigneswaran N, Gillenwater A, Richards-Kortum R. Advances in fluorescence imaging techniques to detect oral cancer and its precursors. Future Oncol. 2010;6:1143–54.CrossRefGoogle Scholar
  11. 11.
    Kois JC, Truelove E. Detecting oral cancer: a new technique and case reports. Dent Today. 2006;25:96–7.Google Scholar
  12. 12.
    Shashidara R, Sreeshyla HS, Sudheendra US. Chemiluminescence: A diagnostic adjunct in oral precancer and cancer: a review. J Cancer Res Ther. 2014;10:487–91.PubMedGoogle Scholar
  13. 13.
    Ram S, Siar CH. Chemiluminescence as a diagnostic aid in the detection of oral cancer and potentially malignant epithelial lesions. Int J OralMaxillofac Surg. 2005;34:521–7.CrossRefGoogle Scholar
  14. 14.
    Mojsa I, Kaczmarzyk T, Zaleska M, Stypulkowska J, Zapala-Pospiech A, Sadecki D. Value of the ViziLite plus system as a diagnostic aid in the early detection of oral cancer/premalignant epithelial lesions. JCraniofac Surg. 2012;23:e162–4.CrossRefGoogle Scholar
  15. 15.
    Awan KH, Morgan PR, Warnakulasuriya S. Utility of chemiluminescence (ViziLite™) in the detection of oral potentially malignant disorders and benign keratoses. J Oral Pathol Med. 2011;40:541–4.CrossRefGoogle Scholar
  16. 16.
    Nagi R, Reddy-Kantharaj YB, Rakesh N, Janardhan-Reddy S. Sahu S. Efficacy of light based detection systems for early detection of oral cancer and oral potentially malignant disorders: systematic review. Med Oral Patol Oral Cir Bucal. 2016;21:e447–55.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kerr AR, Sirois DA, Epstein JB. Clinical evaluation of chemiluminescent lighting: an adjunct for oral mucosal examinations. J Clin Dent. 2006;17:59–63.PubMedGoogle Scholar
  18. 18.
    Rajmohan M, Rao UK, Joshua E, Rajasekaran ST, Kannan R. Assessment of oral mucosa in normal, precancer and cancer using chemiluminescent illumination, toluidine blue supravital staining and oral exfoliative cytology. J Oral Maxillofac Pathol. 2012;16:325–9.CrossRefGoogle Scholar
  19. 19.
    McIntosh L, McCullough MJ, Farah CS. The assessment of diffused light illumination and acetic acid rinse (Microlux/DL) in the visualisation of oral mucosal lesions. Oral Oncol. 2009;45:e227–31.Google Scholar
  20. 20.
    Ibrahim SS, Al-Attas SA, Darwish ZE, Amer HA, Hassan MH. Effectiveness of the Microlux/DL chemiluminescence device in screening of potentially malignant and malignant oral lesions. Asian Pac J Cancer Prev. 2014;15:6081–6.Google Scholar
  21. 21.
    Roblyer D, Kurachi C, Stepanek V, Williams MD, El-Naggar AK, Lee JJ, et al. Objective detection and delineation of oral neoplasia using autofluorescence imaging. Cancer Prev Res (Phila). 2009;2:423–31.CrossRefGoogle Scholar
  22. 22.
    Messadi DV, Younai FS, Liu HH, Guo G, Wang CY. The clinical effectiveness of reflectance optical spectroscopy for the in vivo diagnosis of oral lesions. Int J Oral Sci. 2014;6:162–7.CrossRefGoogle Scholar
  23. 23.
    Wilder-Smith P, Holtzman J, Epsteinz J, Le A. Optical diagnostics in the oral cavity: an overview. Oral Dis. 2010;16:717–28.CrossRefGoogle Scholar
  24. 24.
    Schwarz RA, Gao W, Weber CR, Kurachi C, Lee JJ, El-Naggar AK, et al. Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy. Cancer. 2009;115:1669–79.CrossRefGoogle Scholar
  25. 25.
    Yang SW, Lee YS, Chang LC, Chien HP, Chen TA. Clinical appraisal of endoscopy with narrow-band imaging system in the evaluation and management of homogeneous oral leukoplakia. ORL J OtorhinolaryngolRelat Spec. 2012;74:102–9.CrossRefGoogle Scholar
  26. 26.
    Yang SW, Lee YS, Chang LC, Hwang CC, Chen TA. Diagnostic significance of narrow-band imaging for detecting high-grade dysplasia, carcinoma in situ, and carcinoma in oral leukoplakia. Laryngoscope. 2012;122:2754–61.CrossRefGoogle Scholar
  27. 27.
    Yang SW, Lee YS, Chang LC, Hwang CC, Chen TA. Use of endoscopy with narrow-band imaging system in detecting squamous cell carcinoma in oral chronic non-healing ulcers. Clin Oral Investig. 2014;18:949–59.CrossRefGoogle Scholar
  28. 28.
    Yang SW, Lee YS, Chang LC, Chien HP, Chen TA. Light sources used in evaluating oral leukoplakia: broadband white light versus narrowband imaging. Int J Oral Maxillofac Surg. 2013;42:693–701.CrossRefGoogle Scholar
  29. 29.
    Yang SW, Lee YS, Chang LC, Hwang CC, Luo CM, Chen TA. Use of endoscopy with narrow-band imaging system in evaluating oral leukoplakia. Head Neck. 2012;34:1015–22.CrossRefGoogle Scholar
  30. 30.
    Green B, Cobb AR, Brennan PA, Hopper C. Optical diagnostic techniques for use in lesions of the head and neck: review of the latest developments. Br J Oral Maxillofac Surg. 2014;52:675–80.CrossRefGoogle Scholar
  31. 31.
    Yang SW, Lee YS, Chang LC, Hwang CC, Luo CM, Chen TA. Clinical characteristics of narrow-band imaging of oral erythroplakia and its correlation with pathology. BMC Cancer. 2015;15:406.CrossRefGoogle Scholar
  32. 32.
    Ottaviani G, Gobbo M, Rupel K, D'Ambros M, Perinetti G, Di Lenarda R, et al. The diagnostic performance parameters of narrow band imaging: a preclinical and clinical study. Oral Oncol. 2016;60:130–6.CrossRefGoogle Scholar
  33. 33.
    Zhou H, Zhang J, Guo L, Nie J, Zhu C, Ma X. The value of narrow band imaging in diagnosis of head and neck cancer: a meta-analysis. Sci Rep. 2018;8:515.CrossRefGoogle Scholar
  34. 34.
    Vu A, Farah CS. Narrow band imaging: clinical applications in oral and oropharyngeal cancer. Oral Dis. 2016;22:383–90.CrossRefGoogle Scholar
  35. 35.
    Roblyer D, Richards-Kortum R, Sokolov K, El-Naggar AK, Williams MD, Kurachi C, et al. Multispectral optical imaging device for in vivo detection of oral neoplasia. J Biomed Opt. 2008;13:024019.CrossRefGoogle Scholar
  36. 36.
    Shibahara T, Yamamoto N, Yakushiji T, Nomura T, Sekine R, Muramatsu K. Narrow-band imaging system with magnifying endoscopy for early oral cancer. Bull Tokyo Dent Coll. 2014;55:87–94.CrossRefGoogle Scholar
  37. 37.
    Takano JH, Yakushiji T, Kamiyama I, Nomura T, Katakura A, Takano N, et al. Detecting early oral cancer: narrow band imaging system observation of the oral mucosa microvasculature. Int J OralMaxillofac Surg. 2010;39:208–13.CrossRefGoogle Scholar
  38. 38.
    Yang SW, Lee YS, Chang LC, Hsieh TY, Chen TA. Implications of morphologic patterns of intraepithelial microvasculature observed by narrow-band imaging system in cases of oral squamous cell carcinoma. Oral Oncol. 2013;49:86–92.CrossRefGoogle Scholar
  39. 39.
    Sato H, Inoue H, Ikeda H, Sato C, Onimaru M, Hayee B, et al. Utility of intrapapillary capillary loops seen on magnifying narrow-band imaging in estimating invasive depth of esophageal squamous cell carcinoma. Endoscopy. 2015;47:122–8.CrossRefGoogle Scholar
  40. 40.
    Lingen MW, Tampi MP, Urquhart O, Abt E, Agrawal N, Chaturvedi AK, et al. Adjuncts for the evaluation of potentially malignant disorders in the oral cavity: Diagnostic test accuracy systematic review and meta-analysis-a report of the American Dental Association. J Am Dent Assoc. 2017;148:797–813.e52.CrossRefGoogle Scholar
  41. 41.
    Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335:1458–62.CrossRefGoogle Scholar
  42. 42.
    Bell AG. On the production and reproduction of sound by light. Am J Sci. 1880;118:305–24.CrossRefGoogle Scholar
  43. 43.
    Bowen T, Nasoni RL, Pifer AE, Sembroski GH. Some experimental results on the thermoacoustic imaging of tissue equivalent phantom materials. Ultrasonics Symposium. 1981:823–7.Google Scholar
  44. 44.
    Bowen T. Radiation-induced thermoacoustic soft tissue imaging. Ultrasonics Symposium. 1981:817–22.Google Scholar
  45. 45.
    Bowen T, Nasoni RL, Pifer AE. Thermoacoustic imaging induced by deeply penetrating radiation. Acoustical Imaging. 1984;13:409–27.CrossRefGoogle Scholar
  46. 46.
    Kruger RA. Photoacoustic ultrasound. Med Phys. 1994;21:127–31.CrossRefGoogle Scholar
  47. 47.
    Kruger RA, Liu P, Appledorn CR. Photoacoustic ultrasound (PAUS)—reconstruction tomography. Med Phys. 1995;22:1605–9.CrossRefGoogle Scholar
  48. 48.
    Xu M, Wang LV. Photoacoustic imaging in biomedicine. Rev Sci Instrum. 2006;77:041101.CrossRefGoogle Scholar
  49. 49.
    Valluru KS, Chinni B K, RaoN A, BhattS, Dogra, V S. Basics and clinical applications of photoacoustic imaging. Ultrasound Clinics 2009; 4 , 403–429.Google Scholar
  50. 50.
    Zhou Y, Wang D, Zhang Y, Chitgupi U, Geng J, Wang Y, et al. A phosphorus phthalocyanine formulation with intense absorbance at 1000 nm for deep optical imaging. Theranostics. 2016;6:688–97.CrossRefGoogle Scholar
  51. 51.
    Li C, Wang LV. Photoacoustic tomography and sensing in biomedicine. Phys Med Biol. 2009;54:R59–97.CrossRefGoogle Scholar
  52. 52.
    KolkmanR G, Hondebrink E, Steenbergen W, Mul F. In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor. IEEE J Selected Topics Quantum Electronics. 2003;9:343–6.CrossRefGoogle Scholar
  53. 53.
    Laufer J, Delpy D, Elwell C, Beard P. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration. Phys Med Biol. 2007;52:141–68.CrossRefGoogle Scholar
  54. 54.
    Needles A, Heinmiller A, Sun J, Theodoropoulos C, Bates D, Hirson D, et al. Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60:888–97.CrossRefGoogle Scholar
  55. 55.
    Beard P. Biomedical photoacoustic imaging. Interface Focus. 2011;1:602–31.CrossRefGoogle Scholar
  56. 56.
    Lakshman M, Needles A. Screening and quantification of the tumor microenvironment with micro-ultrasound and photoacoustic imaging. Nat Methods. 2015;2015:12.Google Scholar
  57. 57.
    Liu Q. Role of optical spectroscopy using endogenous contrasts in clinical cancer diagnosis. World J Clin Oncol. 2011;2:50–63.CrossRefGoogle Scholar
  58. 58.
    Yao DK, Maslov K, Shung KK, Zhou Q, Wang LV. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. Opt Lett. 2010;35:4139–41.CrossRefGoogle Scholar
  59. 59.
    Smith B D, Smith GL, Carter, D, Sasaki C T, Haffty B G. Prognostic significance of vascular endothelial growth factor protein levels in oral and oropharyngeal squamous cell carcinoma. J Clin Oncol 2000; 18: 2046–2052.Google Scholar
  60. 60.
    Brennan PA, Mackenzie N, Quintero M. Hypoxia-inducible factor 1α in oral cancer. J Oral Pathol Med. 2005;34:385–9.CrossRefGoogle Scholar
  61. 61.
    Oraevsky AA, Karabutov AA, Savateeva EV, Bell BA, Motamedi M, Thomsen SL, et al. Optoacoustic imaging of oral cancer: Feasibility studies in hamster model of squamous cell carcinoma. In BiOS'99 International Biomedical Optics Symposium; 1999. International Society for Optics and Photonics, pp. 385–396.Google Scholar
  62. 62.
    Savateeva EV, Karabutov AA, Motamedi M, Bell BA, Johnigan RM, Oraevsky AA. Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography. In BiOS 2000 the international symposium on biomedical optics; 2000. International Society for Optics and Photonics. pp. 55-66.Google Scholar
  63. 63.
    Fatakdawala H, Poti S, Zhou F, Sun Y, Bec J, Liu J, et al. Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques. Biomed Opt Express. 2013;4:1724–41.CrossRefGoogle Scholar
  64. 64.
    Dogra VS, Chinni BK, Valluru KS, Moalem J, Giampoli EJ, Evans K, et al. Preliminary results of ex vivo multispectral photoacoustic imaging in the management of thyroid cancer. Am J Roentgenol. 2014;202:W552–8.CrossRefGoogle Scholar
  65. 65.
    Kima J, Kimb MH, Job K, Hab J, Kima Y, Limb DJ et al. Photoacoustic analysis of thyroid cancer in vivo: a pilot study. In Proc. of SPIE Vol 2017, March. (Vol. 10064, pp. 1006408–1).Google Scholar
  66. 66.
    Rich LJ, Seshadri M. Photoacoustic imaging of vascular hemodynamics: validation with blood oxygenation level–dependent MR imaging. Radiology. 2015;275:110–8.CrossRefGoogle Scholar
  67. 67.
    Rich LJ, Seshadri M. Photoacoustic monitoring of tumor and normal tissue response to radiation. Sci Rep. 2016;6:21237.CrossRefGoogle Scholar
  68. 68.
    Mallidi S, Watanabe K, Timerman D, Schoenfeld D, Hasan T. Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging. Theranostics. 2015;5:289–301.CrossRefGoogle Scholar
  69. 69.
    Luke GP, Yeager D, Emelianov SY. Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann Biomed Eng. 2012;40:422–37.CrossRefGoogle Scholar
  70. 70.
    Weber J, Beard PC, Bohndiek SE. Contrast agents for molecular photoacoustic imaging. Nat Methods. 2016;13:639–50.CrossRefGoogle Scholar
  71. 71.
    Emelianov SY, Li PC, O’Donnell M. Photoacoustics for molecular imaging and therapy. Phys Today. 2009;62:34–9.CrossRefGoogle Scholar
  72. 72.
    Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine (Lond). 2015;10:299–320.CrossRefGoogle Scholar
  73. 73.
    Pan D, Kim B, Wang LV, Lanza GM. A brief account of nanoparticle contrast agents for photoacoustic imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5:517–43.CrossRefGoogle Scholar
  74. 74.
    Mallidi S, Larson T, Tam J, Joshi PP, Karpiouk A, Sokolov K, Emelianov S. Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett. 2009;9:2825–31.CrossRefGoogle Scholar
  75. 75.
    Nie L, Chen M, Sun X, Rong P, Zheng N, Chen X. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging. Nanoscale. 2014;6:1271–6.CrossRefGoogle Scholar
  76. 76.
    Li PC, Wang CR, Shieh DB, Wei CW, Liao CK, Poe C, et al. In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express. 2008;16:18605–15.CrossRefGoogle Scholar
  77. 77.
    Chen YS, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, et al. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express. 2010;18:8867–78.CrossRefGoogle Scholar
  78. 78.
    Chen YS, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011;11:348–54.CrossRefGoogle Scholar
  79. 79.
    Garcia-Uribe A, Erpelding TN, Krumholz A, Ke H, Maslov K, Appleton C, et al. Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer. Sci Rep. 2015;5:15748.CrossRefGoogle Scholar
  80. 80.
    Stoffels I, Morscher S, Helfrich I, Hillen U, Leyh J, Burton NC, et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci Transl Med. 2015;7:317ra199.CrossRefGoogle Scholar
  81. 81.
    Huynh E, Lovell J, Helfield BL, Jeon M, Kim C, Goertz DE, et al. Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc. 2012;134:16464–7.CrossRefGoogle Scholar
  82. 82.
    Muhanna N, Jin CS, Huynh E, Chan H, Qiu Y, Jiang W, et al. Phototheranostic porphyrin nanoparticles enable visualization and targeted treatment of head and neck cancer in clinically relevant models. Theranostics. 2015;5:1428–43.CrossRefGoogle Scholar
  83. 83.
    Yang Q, Cui H, Cai S, Yang X, Forrest ML. In vivo photoacoustic imaging of chemotherapy-induced apoptosis in squamous cell carcinoma using a near-infrared caspase-9 probe. J Biomed Opt. 2011;16:116026.CrossRefGoogle Scholar
  84. 84.
    Luke GP, Myers JN, Emelianov SY, Sokolov KV. Sentinel lymph node biopsy revisited: ultrasound-guided photoacoustic detection of micrometastases using molecularly targeted plasmonic nanosensors. Cancer Res. 2014;74:5397–408.CrossRefGoogle Scholar
  85. 85.
    Shakiba M, Ng KK, Huynh E, Chan H, Charron DM, Chen J, et al. Stable J-aggregation enabled dual photoacoustic and fluorescence nanoparticles for intraoperative cancer imaging. Nanoscale. 2016;8:12618.CrossRefGoogle Scholar
  86. 86.
    Luke GP, Emelianov SY. Label-free detection of lymph node metastases with US-guided functional photoacoustic imaging. Radiology. 2015;277:435–42.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Prashanth Panta
    • 1
    Email author
  • Laurie J. Rich
    • 2
  • Mukund Seshadri
    • 2
  1. 1.Department of Oral Medicine and RadiologyMNR Dental College and HospitalSangareddyIndia
  2. 2.Department of Oral OncologyRoswell Park Comprehensive Cancer CenterBuffaloUSA

Personalised recommendations