Optical Techniques: Investigations in Oral Cancers

  • Piyush Kumar
  • C. Murali KrishnaEmail author


The routine oral cancer screening involves a clinical oral examination followed by biopsy. The biopsied sample is subjected to histopathology, the gold standard. As this procedure is prone to subjective errors, requires experienced pathologists and is time consuming, it is pertinent to explore newer diagnostic adjuncts/methods. The changes in the biochemical properties of an organ/tissue are also known to be reflected in the optical properties which can be conveniently exploited through optical techniques. Optical techniques are shown to be rapid, objective, and noninvasive and are sensitive to tissue biochemistry. Since biochemical changes often precede visible morphological alterations, these techniques can serve as potential screening/diagnostic tools. This chapter highlights the advancements of optical/spectroscopic techniques, such as fluorescence spectroscopy, elastic scattering spectroscopy, diffuse reflectance spectroscopy, optical coherence tomography, Fourier-transform infrared spectroscopy, and Raman spectroscopy, in the field of oral cancer diagnostics/screening. The chapter begins with discussion on scope of optical techniques and basic principles of these techniques, followed by a brief discussion of multivariate statistical tools which play a major role in data analysis. The last section provides an overview on explorations of optical techniques in oral cancer screening/diagnosis.


Oral cancer Screening Early diagnosis Noninvasive Optical techniques 


  1. 1.
    Mehrotra R, Gupta DK. Exciting new advances in oral cancer diagnosis: avenues to early detection. Head Neck Oncol. 2011;3:33.Google Scholar
  2. 2.
    Sankaranarayanan R, Ramadas K, Thomas G, Muwonge R, Thara S, Mathew B, Rajan B, Trivandrum oral cancer screening study G. Effect of screening on oral cancer mortality in Kerala, India: a cluster-randomised controlled trial. Lancet. 2005;365:1927–33.Google Scholar
  3. 3.
    Lingen MW, Kalmar JR, Karrison T, Speight PM. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol. 2008;44:10–22.CrossRefGoogle Scholar
  4. 4.
    Fedele S. Diagnostic aids in the screening of oral cancer. Head Neck Oncol. 2009;1:5.CrossRefGoogle Scholar
  5. 5.
    Masters BR. The development of fluorescence microscopy. In: eLS. Chichester: Wiley; 2010.Google Scholar
  6. 6.
    Stokes GG. On the change of refrangibility of light. In: Philosophical transactions of the royal society of London; 1852. p. 463–562.Google Scholar
  7. 7.
    Wagnieres GA, Star WM, Wilson BC. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol. 1998;68:603–32.CrossRefGoogle Scholar
  8. 8.
    Pottier R. In vitro and in vivo fluorescence monitoring of photosensitizers. J Photochem Photobiol B. 1990;6:103–9.CrossRefGoogle Scholar
  9. 9.
    Nilsson H, Johansson J, Svanberg K, Svanberg S, Jori G, Reddi E, et al. Laser-induced fluorescence in malignant and normal tissue in mice injected with two different carotenoporphyrins. Br J Cancer. 1994;70:873.Google Scholar
  10. 10.
    Ramanujam N. Fluorescence spectroscopy in vivo. In: Encyclopedia of analytical chemistry. Chichester: Wiley; 2000.Google Scholar
  11. 11.
    Neves V, Heister E, Costa S, Tilmaciu C, Flahaut E, Soula B, et al. Design of double-walled carbon nanotubes for biomedical applications. Nanotechnology. 2012;23:365102.Google Scholar
  12. 12.
    De Veld D, Witjes M, Sterenborg H, Roodenburg J. The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncol. 2005;41:117–31.CrossRefGoogle Scholar
  13. 13.
    Inaguma M, Hashimoto K. Porphyrin-like fluorescence in oral cancer: in vivo fluorescence spectral characterization of lesions by use of a near-ultraviolet excited autofluorescence diagnosis system and separation of fluorescent extracts by capillary electrophoresis. Cancer. 1999;86:2201–11.CrossRefGoogle Scholar
  14. 14.
    Patton L, Epstein J, Kerr A. Adjunctive techniques for oral cancer examination and lesion diagnosis: a systematic review of the literature. J Am Dent Assoc. 2008;139:896–905.CrossRefGoogle Scholar
  15. 15.
    Kois JC, Truelove E. Detecting oral cancer: a new technique and case reports. Dent Today. 2006;25:94, 96-97.PubMedGoogle Scholar
  16. 16.
    Laronde DM, Williams PM, Hislop TG, Poh C, Ng S, Bajdik C, Zhang L, MacAulay C, Rosin MP. Influence of fluorescence on screening decisions for oral mucosal lesions in community dental practices. J Oral Pathol Med. 2014;43:7–13.CrossRefGoogle Scholar
  17. 17.
    A’Amar O, Liou L, Rodriguez-Diaz E, De las Morenas A, Bigio I. Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment. Lasers Med Sci. 2013;28:1323–9.CrossRefGoogle Scholar
  18. 18.
    Kubelka P. New contributions to the optics of intensely light-scattering materials. Part II: nonhomogeneous layers*. J Opt Soc Am. 1954;44:330–5.CrossRefGoogle Scholar
  19. 19.
    Huang P-Y, Chien C-Y, Sheu C-R, Chen Y-W, Tseng S-H. Light distribution modulated diffuse reflectance spectroscopy. Biomed Opt Express. 2016;7:2118–29.Google Scholar
  20. 20.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.Google Scholar
  21. 21.
    Drexler W, Morgner U, Ghanta RK, Kärtner FX, Schuman JS, Fujimoto JG. Ultrahigh-resolution ophthalmic optical coherence tomography. Nature Med. 2001;7:502–7.CrossRefGoogle Scholar
  22. 22.
    An L, Wang RK. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt Express. 2008;16:11438–52.CrossRefGoogle Scholar
  23. 23.
    Boppart SA, Luo W, Marks DL, Singletary KW. Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. Breast Cancer Res Treat. 2004;84:85–97.Google Scholar
  24. 24.
    Vakoc BJ, Fukumura D, Jain RK, Bouma BE. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nat Rev Cancer. 2012;12:363–8.Google Scholar
  25. 25.
    Wessels R, De Bruin D, Faber D, Van Leeuwen T, Van Beurden M, Ruers T. Optical biopsy of epithelial cancers by optical coherence tomography (OCT). Lasers Med Sci. 2014;29:1297–305.Google Scholar
  26. 26.
    Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv. 2009;2:1035–46.Google Scholar
  27. 27.
    Larina IV, Ivers S, Syed S, Dickinson ME, Larin KV. Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT. Opt Lett. 2009;34:986–8.CrossRefGoogle Scholar
  28. 28.
    Böhringer H, Boller D, Leppert J, Knopp U, Lankenau E, Reusche E, et al. Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue. Lasers Surg Med. 2006;38:588–97.Google Scholar
  29. 29.
    Assayag O, Grieve K, Devaux B, Harms F, Pallud J, Chretien F, et al. Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography. Neuro Image Clin. 2013;2:549–57.Google Scholar
  30. 30.
    Kut C, Chaichana KL, Xi J, Raza SM, Ye X, McVeigh ER, et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci Transl Med. 2015;7:292ra100.Google Scholar
  31. 31.
    Raman CV, Krishnan KS. A new type of secondary radiation. Nature. 1928;121:501–2.CrossRefGoogle Scholar
  32. 32.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Surface-enhanced Raman scattering and biophysics. J Phys Condens Matter. 2002;14:R597.CrossRefGoogle Scholar
  33. 33.
    Xie W, Schlücker S. Medical applications of surface-enhanced Raman scattering. Phys Chem Chem Phys. 2013;15:5329–44.CrossRefGoogle Scholar
  34. 34.
    Tolles WM, Nibler J, McDonald J, Harvey A. A review of the theory and application of coherent anti-stokes Raman spectroscopy (CARS). Appl Spectrosc. 1977;31:253–71.CrossRefGoogle Scholar
  35. 35.
    Kudelski A. Analytical applications of Raman spectroscopy. Talanta. 2008;76:1–8.CrossRefGoogle Scholar
  36. 36.
    White JC. Stimulated raman scattering. In: Tunable lasers. Berlin: Springer; 1987. p. 115–207.Google Scholar
  37. 37.
    Yakovlev VV, Petrov GI, Zhang HF, Noojin GD, Denton ML, Thomas RJ, et al. Stimulated Raman scattering: old physics, new applications. J Mod Opt. 2009;56:1970–3.Google Scholar
  38. 38.
    Eesley GL. Coherent raman spectroscopy. New York: Elsevier; 2013.Google Scholar
  39. 39.
    Dingari NC, Horowitz GL, Kang JW, Dasari RR, Barman I. Raman spectroscopy provides a powerful diagnostic tool for accurate determination of albumin glycation. PLoS One. 2012;7:e32406.CrossRefGoogle Scholar
  40. 40.
    Barman I, Dingari NC, Kang JW, Horowitz GL, Dasari RR, Feld MS. Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin. Anal Chem. 2012;84:2474–82.CrossRefGoogle Scholar
  41. 41.
    Filik J, Stone N. Drop coating deposition Raman spectroscopy of protein mixtures. Analyst. 2007;132:544–50.CrossRefGoogle Scholar
  42. 42.
    Matousek P, Clark I, Draper E, Morris M, Goodship A, Everall N, et al. Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl Spectrosc. 2005;59:393–400.Google Scholar
  43. 43.
    Stone N, Kerssens M, Lloyd GR, Faulds K, Graham D, Matousek P. Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging–the next dimension. Chem Sci. 2011;2:776–80.CrossRefGoogle Scholar
  44. 44.
    Sharma B, Ma K, Glucksberg MR, Van Duyne RP. Seeing through bone with surface-enhanced spatially offset Raman spectroscopy. J Am Chem Soc. 2013;135:17290–3.CrossRefGoogle Scholar
  45. 45.
    Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2:433–59.CrossRefGoogle Scholar
  46. 46.
    Varmuza K, Filzmoser P. Introduction to multivariate statistical analysis in chemometrics. Boca Raton: CRC press; 2009.CrossRefGoogle Scholar
  47. 47.
    Bakker Schut TC, Witjes MJ, Sterenborg HJ, Speelman OC, Roodenburg JL, Marple ET, et al. In vivo detection of dysplastic tissue by Raman spectroscopy. Anal Chem. 2000;72:6010–8.Google Scholar
  48. 48.
    Gimenez-Conti IB, Slaga TJ. The hamster cheek pouch carcinogenesis model. J Cell Biochem. 1993;53:83–90.CrossRefGoogle Scholar
  49. 49.
    Salley JJ. Experimental carcinogenesis in the cheek pouch of the Syrian hamster. J Dent Res. 1954;33:253–62.CrossRefGoogle Scholar
  50. 50.
    Keyes PH, Dale PP. A preliminary survey of the pouches and dentition of the Syrian hamster. J Dent Res. 1944;23:427–38.CrossRefGoogle Scholar
  51. 51.
    Shklar G. Experimental oral pathology in the Syrian hamster. Prog Exp Tumor Res. 1972;16:518–38.CrossRefGoogle Scholar
  52. 52.
    Balasenthil S, Saroja M, Ramachandran C, Nagini S. Of humans and hamsters: comparative analysis of lipid peroxidation, glutathione, and glutathione-dependent enzymes during oral carcinogenesis. Br J Oral Maxillofac Surg. 2000;38:267–70.CrossRefGoogle Scholar
  53. 53.
    Nagini S, Letchoumy PV, Thangavelu A, Ramachandran C. Of humans and hamsters: a comparative evaluation of carcinogen activation, DNA damage, cell proliferation, apoptosis, invasion, and angiogenesis in oral cancer patients and hamster buccal pouch carcinomas. Oral Oncol. 2009;45:e31–7.CrossRefGoogle Scholar
  54. 54.
    Ambatipudi S, Bhosale PG, Heath E, Pandey M, Kumar G, Kane S, et al. Downregulation of keratin 76 expression during oral carcinogenesis of human, hamster and mouse. PLoS One. 2013;8:e70688.Google Scholar
  55. 55.
    Suda D, Schwartz J, Shklar G. GGT reduction in beta carotene-inhibition of hamster buccal pouch carcinogenesis. Eur J Cancer Clin Oncol. 1987;23:43–6.CrossRefGoogle Scholar
  56. 56.
    Solt DB. Localization of gamma-glutamyl transpeptidase in hamster buccal pouch epithelium treated with 7, 12-dimethylbenz [a] anthracene. J Nat Cancer Inst. 1981;67:193–200.PubMedGoogle Scholar
  57. 57.
    Gimenez-Conti IB, Bianchi AB, Stockman SL, Conti CJ, Slaga TJ. Activating mutation of the ha-ras gene in chemically induced tumors of the hamster cheek pouch. Mol Carcinog. 1992;5:259–63.CrossRefGoogle Scholar
  58. 58.
    Gimenez-Conti IB, LaBate M, Liu F, Osterndorff E. p53 alterations in chemically induced hamster cheek-pouch lesions. Mol Carcinog. 1996;16:197–202.CrossRefGoogle Scholar
  59. 59.
    Husain Z, Fei Y, Roy S, Solt DB, Polverini PJ, Biswas DK. Sequential expression and cooperative interaction of c-ha-ras and c-erbB genes in in vivo chemical carcinogenesis. Proc Nat Acad Sci. 1989;86:1264–8.CrossRefGoogle Scholar
  60. 60.
    Chen CT, Chiang HK, Chow SN, Wang CY, Lee YS, Tsai JC, et al. Autofluorescence in normal and malignant human oral tissues and in DMBA-induced hamster buccal pouch carcinogenesis. J Oral Pathol Med. 1998;27:470–4.Google Scholar
  61. 61.
    Wang CY, Tsai T, Chen HC, Chang SC, Chen CT, Chiang CP. Autofluorescence spectroscopy for in vivo diagnosis of DMBA-induced hamster buccal pouch pre-cancers and cancers. J Oral Pathol Med. 2003;32:18–24.CrossRefGoogle Scholar
  62. 62.
    Wang C-Y, Chen C-T, Chiang C-P, Young S-T, Chow S-N, Chiang HK. Partial least-squares discriminant analysis on autofluorescence spectra of oral carcinogenesis. Appl Spectrosc. 1998;52:1190–6.CrossRefGoogle Scholar
  63. 63.
    Sun Y, Phipps J, Elson DS, Stoy H, Tinling S, Meier J, et al. Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma. Opt Lett. 2009;34:2081–3.Google Scholar
  64. 64.
    Cheng S, Cuenca RM, Liu B, Malik BH, Jabbour JM, Maitland KC, et al. Handheld multispectral fluorescence lifetime imaging system for in vivo applications. Biomed Opti Express. 2014;5:921–31.Google Scholar
  65. 65.
    Chen Y-W, Liaw Y-K, Hung H-R, Chung P-C, Tseng S-H Differentiating early oral cancer from normal oral tissue using diffuse reflectance spectroscopy. In: Asia communications and photonics conference, 2013. Optical Society of America. p. AF4I. 3.Google Scholar
  66. 66.
    Skala MC, Palmer GM, Vrotsos KM, Gendron-Fitzpatrick A, Ramanujam N. Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy. Opt Express. 2007;15:7863–75.Google Scholar
  67. 67.
    Matheny ES, Hanna NM, Jung WG, Chen Z, Wilder-Smith P, Mina-Araghi R, et al. Optical coherence tomography of malignancy in hamster cheek pouches. J Biomed Opt. 2004;9:978–81.Google Scholar
  68. 68.
    Hanna NM, Waite W, Taylor K, Jung WG, Mukai D, Matheny E, et al. Feasibility of three-dimensional optical coherence tomography and optical Doppler tomography of malignancy in hamster cheek pouches. Photomed Laser Surg. 2006;24:402–9.Google Scholar
  69. 69.
    Graf RN, Robles FE, Chen X, Wax A. Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations. J Biomed Opt. 2009;14:064030.Google Scholar
  70. 70.
    Pande P, Shrestha S, Park J, Serafino MJ, Gimenez-Conti I, Brandon J, Cheng Y-S, Applegate BE, Jo JA. Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch. J Biomed Opt. 2014;19:086022.Google Scholar
  71. 71.
    Wilder-Smith P, Jung W-G, Brenner M, Osann K, Beydoun H, Messadi D, Chen Z. In vivo optical coherence tomography for the diagnosis of oral malignancy. Lasers Surg Med. 2004;35:269–75.CrossRefGoogle Scholar
  72. 72.
    Jung W, Zhang J, Chung J, Wilder-Smith P, Brenner M, Nelson JS, Chen Z. Advances in oral cancer detection using optical coherence tomography. IEEE J Sel Top Quantum Electron. 2005;11:811–7.CrossRefGoogle Scholar
  73. 73.
    Kumar P, Krishna CM, Sahoo NK, Rao KD. Multimodal spectroscopic applications in cancer diagnosis: combined Raman spectroscopy and optical coherence tomography. Asian J Phys. 2015;24:00.Google Scholar
  74. 74.
    Kumar P. Raman spectroscopy in experimental oral carcinogenesis: investigation of abnormal changes in control tissues. J Raman Spectrosc. 2016;47:1318–26.Google Scholar
  75. 75.
    Pande P, Shrestha S, Park J, Gimenez-Conti I, Brandon J, Applegate BE, et al. Automated analysis of multimodal fluorescence lifetime imaging and optical coherence tomography data for the diagnosis of oral cancer in the hamster cheek pouch model. Biomed Opt Express. 2016;7:2000–15.Google Scholar
  76. 76.
    Mognetti B, Di Carlo F, Berta GN. Animal models in oral cancer research. Oral Oncol. 2006;42:448–60.Google Scholar
  77. 77.
    Mizuno A, Nozawa H, Yaginuma T, Matsuzaki H, Ozaki Y, Iriyama K. Effect of aldose reductase inhibitor on experimental diabetic cataract monitored by laser Raman spectroscopy. Exp Eye Res. 1987;45:185–6.CrossRefGoogle Scholar
  78. 78.
    Mizuno A, Toshima S, Mori Y. Confirmation of lens hydration by Raman spectroscopy. Exp Eye Res. 1990;50:647–9.CrossRefGoogle Scholar
  79. 79.
    Nozawa H, Yaginuma T, Mizuno A. Raman spectroscopic study of the effect of aldose reductase inhibitor on experimental diabetic cataract. Nippon Ganka Gakkai Zasshi. 1988;92:194–201.PubMedGoogle Scholar
  80. 80.
    Mizuno A, Kanematsu EH, Suzuki H, Ihara N. Laser Raman spectroscopic study of hereditary cataractous lenses in ICR/f-strain rat. Jpn J Ophthalmol. 1988;32:281–7.PubMedGoogle Scholar
  81. 81.
    Wang C, Wang Y, Huffman NT, Cui C, Yao X, Midura S, et al. Confocal laser Raman microspectroscopy of biomineralization foci in UMR 106 osteoblastic cultures reveals temporally synchronized protein changes preceding and accompanying mineral crystal deposition. J Biol Chem. 2009;284:7100–13.Google Scholar
  82. 82.
    Ohsaki K, Shibata A, Yamashita S, Oe M, Wang KQ, Cui PC, et al. Demonstrations of de-and remineralization mechanism as revealed in synthetic auditory ossicle (Apaceram) of rats by laser-Raman spectrometry. Cell Mol Biol (Noisy-le-Grand). 1995;41:1155–67.Google Scholar
  83. 83.
    Oliveira AP, Bitar RA, Silveira L, Zangaro RA, Martin AA. Near-infrared Raman spectroscopy for oral carcinoma diagnosis. Photomed Laser Surg. 2006;24:348–53.Google Scholar
  84. 84.
    Ghanate AD, Kumar G, Talathi S, Maru GB, Krishna CM Raman spectroscopic detection of early stages in DMBA-induced tumor evolution in hamster buccal pouch model: an exploratory study. In: Photonics 2010: Tenth International Conference on Fiber Optics and Photonics; 817303 (2011), Proceedings Volume 8173. International Conference on Fiber Optics and Photonics, 2010, Guwahati, India. p. 817303–817307.Google Scholar
  85. 85.
    Singh SP, Sahu A, Deshmukh A, Chaturvedi P, Krishna CM. In vivo Raman spectroscopy of oral buccal mucosa: a study on malignancy associated changes (MAC)/cancer field effects (CFE). Analyst. 2013;138:4175–82.Google Scholar
  86. 86.
    Singh SP, Deshmukh A, Chaturvedi P, Murali Krishna C. In vivo Raman spectroscopic identification of premalignant lesions in oral buccal mucosa. J Biomed Opt. 2012;17:105002.Google Scholar
  87. 87.
    Singh SP, Deshmukh A, Chaturvedi P, Krishna CM. Raman spectroscopy in head and neck cancers: toward oncological applications. J Cancer Res Ther. 2012;8:S126–32.Google Scholar
  88. 88.
    Deshmukh A, Singh SP, Chaturvedi P, Krishna CM. Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies. J Biomed Opt. 2011;16:127004.Google Scholar
  89. 89.
    Sahu A, Deshmukh A, Ghanate AD, Singh SP, Chaturvedi P, Krishna CM. Raman spectroscopy of oral buccal mucosa: a study on age-related physiological changes and tobacco-related pathological changes. Technol Cancer Res Treat. 2012;11:529–41.CrossRefGoogle Scholar
  90. 90.
    Kumar P, Bhattacharjee T, Ingle A, Maru G, Krishna CM. Raman spectroscopy of experimental oral carcinogenesis: study on sequential cancer progression in hamster buccal pouch model. Technol Cancer Res Treat. 2016;15:NP60–72.Google Scholar
  91. 91.
    Gohulkumar M, Kumar P, Murali Krishna C, Krishnakumar N. Evaluation of Raman spectroscopy for prediction of antitumor response to silibinin and its nanoparticulates in DMBA-induced oral carcinogenesis. J Raman Spectrosc. 2016; 47:375–383.Google Scholar
  92. 92.
    Gurushankar K, Gohulkumar M, Kumar P, Krishna CM, Krishnakumar N. Raman spectroscopy detects biomolecular changes associated with nanoencapsulated hesperetin treatment in experimental oral carcinogenesis. Laser Phys Lett. 2016;13:035901.Google Scholar
  93. 93.
    Sharwani A, Jerjes W, Salih V, MacRobert A, El-Maaytah M, Khalil H, et al. Fluorescence spectroscopy combined with 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in detecting oral premalignancy. J Photochem Photobiol B. 2006;83:27–33.Google Scholar
  94. 94.
    Betz CS, Stepp H, Janda P, Arbogast S, Grevers G, Baumgartner R, et al. A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis. Int J Cancer. 2002;97:245–52.Google Scholar
  95. 95.
    Leunig A, Betz CS, Mehlmann M, Stepp H, Arbogast S, Grevers G, et al. Detection of squamous cell carcinoma of the oral cavity by imaging 5-aminolevulinic acid-induced protoporphyrin IX fluorescence. Laryngoscope. 2000;110:78–83.Google Scholar
  96. 96.
    Policard A. Etude sur les aspects offerts par des tumeurs experimentales examinees a la lumiere de Wood. CR Soc Biol. 1924;91:1423–4.Google Scholar
  97. 97.
    Heintzelman DL, Utzinger U, Fuchs H, Zuluaga A, Gossage K, Gillenwater AM, et al. Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy. Photochem Photobiol. 2000;72(1):103–13.Google Scholar
  98. 98.
    Gillenwater A, Jacob R, Ganeshappa R, Kemp B, El-Naggar AK, Palmer JL, et al. Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence. Arch Otolaryngol Head Neck Surg. 1998;124:1251–8.Google Scholar
  99. 99.
    Braichotte DR, Wagnieres GA, Bays R, Monnier P, van den Bergh HE. Clinical pharmacokinetic studies of photofrin by fluorescence spectroscopy in the oral cavity, the esophagus, and the bronchi. Cancer-Philadelphia. 1995;75:2768.CrossRefGoogle Scholar
  100. 100.
    Ebenezar J, Ganesan S, Aruna P, Muralinaidu R, Renganathan K, Saraswathy TR. Noninvasive fluorescence excitation spectroscopy for the diagnosis of oral neoplasia in vivo. J Biomed Opt. 2012;17:97007–1.Google Scholar
  101. 101.
    Müller MG, Valdez TA, Georgakoudi I, Backman V, Fuentes C, Kabani S, et al. Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma. Cancer. 2003;97:1681–92.Google Scholar
  102. 102.
    Venugopal C, Nazeer SS, Balan A, Jayasree R. Autofluorescence spectroscopy augmented by multivariate analysis as a potential noninvasive tool for early diagnosis of oral cavity disorders. Photomed Laser Surg. 2013;31:605–12.CrossRefGoogle Scholar
  103. 103.
    Haris PS, Balan A, Jayasree RS, Gupta AK. Autofluorescence spectroscopy for the in vivo evaluation of oral submucous fibrosis. Photomed Laser Surg. 2009;27:757–61.Google Scholar
  104. 104.
    Jayanthi J, Mallia RJ, Shiny ST, Baiju KV, Mathews A, Kumar R, et al. Discriminant analysis of autofluorescence spectra for classification of oral lesions in vivo. Lasers Surg Med. 2009;41:345–52.Google Scholar
  105. 105.
    Shaiju SN, Ariya S, Asish R, Haris PS, Anita B, Kumar GA, Jayasree RS. Habits with killer instincts: in vivo analysis on the severity of oral mucosal alterations using autofluorescence spectroscopy. J Biomed Opt. 2011;16:087006.Google Scholar
  106. 106.
    Nazeer SS, Asish R, Venugopal C, Anita B, Gupta AK, Jayasree RS. Noninvasive assessment of the risk of tobacco abuse in oral mucosa using fluorescence spectroscopy: a clinical approach. J Biomed Opt. 2014;19:057013..Google Scholar
  107. 107.
    Unnikrishnan V, Nayak R, Bernard R, Priya KJ, Patil A, Ebenezer J, et al. Parameter optimization of a laser-induced fluorescence system for in vivo screening of oral cancer. J Laser Appl. 2011;23:032004.Google Scholar
  108. 108.
    Jerjes W, Swinson B, Pickard D, Thomas G, Hopper C. Detection of cervical intranodal metastasis in oral cancer using elastic scattering spectroscopy. Oral Oncol. 2004;40:673–8.CrossRefGoogle Scholar
  109. 109.
    Jerjes W, Swinson B, Johnson K, Thomas G, Hopper C. Assessment of bony resection margins in oral cancer using elastic scattering spectroscopy: a study on archival material. Arch Oral Biol. 2005;50:361–6.CrossRefGoogle Scholar
  110. 110.
    De Veld DC, Skurichina M, Witjes MJ, Duin RP, Sterenborg HJ, Roodenburg JL. Autofluorescence and diffuse reflectance spectroscopy for oral oncology. Lasers Surg Med. 2005;36:356–64.CrossRefGoogle Scholar
  111. 111.
    Subhash N, Mallia J, Thomas SS, Mathews A, Sebastian P, Madhavan J. Oral cancer detection using diffuse reflectance spectral ratio R540∕ R575 of oxygenated hemoglobin bands. J Biomed Opt. 2006;11:014018.Google Scholar
  112. 112.
    Jayanthi J, Nisha G, Manju S, Philip E, Jeemon P, Baiju K, et al. Diffuse reflectance spectroscopy: diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity. BMJ Open. 2011;1:e000071.Google Scholar
  113. 113.
    Mallia R, Thomas SS, Mathews A, Kumar R, Sebastian P, Madhavan J, et al. Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer. J Biomed Opt. 2008;13:041306.Google Scholar
  114. 114.
    Yu B, Shah A, Nagarajan VK, Ferris DG. Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe. Biomed Opt Express. 2014;5:675–89.CrossRefGoogle Scholar
  115. 115.
    Mallia RJ, Narayanan S, Madhavan J, Sebastian P, Kumar R, Mathews A, et al. Diffuse reflection spectroscopy: an alternative to autofluorescence spectroscopy in tongue cancer detection. Appl Spectrosc. 2010;64:409–18.Google Scholar
  116. 116.
    Jerjes W, Upile T, Betz CS, Abbas S, Sandison A, Hopper C. Detection of oral pathologies using optical coherence tomography. Eur Oncol. 2008;4:57–9.Google Scholar
  117. 117.
    Hamdoon Z, Jerjes W, Al-Delayme R, McKenzie G, Jay A, Hopper C. Structural validation of oral mucosal tissue using optical coherence tomography. Head Neck Oncol. 2012;4:1.CrossRefGoogle Scholar
  118. 118.
    Wu JG, Xu YZ, Sun CW, Soloway RD, Xu DF, Wu QG, et al. Distinguishing malignant from normal oral tissues using FTIR fiber-optic techniques. Biopolymers. 2001;62:185–92.Google Scholar
  119. 119.
    Fukuyama Y, Yoshida S, Yanagisawa S, Shimizu M. A study on the differences between oral squamous cell carcinomas and normal oral mucosas measured by Fourier transform infrared spectroscopy. Biospectroscopy. 1999;5:117–26.CrossRefGoogle Scholar
  120. 120.
    Banerjee S, Pal M, Chakrabarty J, Petibois C, Paul RR, Giri A, et al. Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer. Anal Bioanal Chem. 2015;407:7935–43.Google Scholar
  121. 121.
    Venkatakrishna K, Kurien J, Pai KM, Valiathan M, Kumar NN, Murali Krishna C, et al. Optical pathology of oral tissue: a Raman spectroscopy diagnostic method. Current Sci. 2001;80:665–9.Google Scholar
  122. 122.
    Krishna CM, Sockalingum G, Kurien J, Rao L, Venteo L, Pluot M, et al. Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma. Appl Spectrosc. 2004;58:1128–35.Google Scholar
  123. 123.
    Malini R, Venkatakrishna K, Kurien J, Pai KM, Rao L, Kartha VB, et al. Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: a Raman spectroscopy study. Biopolymers. 2006;81(3):179–93.Google Scholar
  124. 124.
    Hu Y, Jiang T, Zhao Z. Discrimination of squamous cell carcinoma of the oral cavity using Raman spectroscopy and chemometric analysis. In: ICINIS'08 First International Conference on. Intelligent networks and intelligent systems, 2008. IEEE; 2008. p. 633–6.Google Scholar
  125. 125.
    Sunder N, Rao N, Kartha V, Ullas G, Kurien J. Laser raman spectroscopy: a novel diagnostic tool for oral cancer. J Orofac Sci. 2011;3:15.Google Scholar
  126. 126.
    Behl I, Kukreja L, Deshmukh A, Singh SP, Mamgain H, Hole AR et al. Raman mapping of oral buccal mucosa: a spectral histopathology approach. J Biomed Opt. 2014;19:126005.Google Scholar
  127. 127.
    Cals FL, Bakker Schut TC, Hardillo JA, Baatenburg de Jong RJ, Koljenovic S, Puppels GJ. Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical margins. Lab Investig. 2015;95:1186–96.Google Scholar
  128. 128.
    Baker MJ, Hussain SR, Lovergne L, Untereiner V, Hughes C, Lukaszewski RA, et al. Developing and understanding biofluid vibrational spectroscopy: a critical review. Chem Soc Rev. 2016;45:1803–18.Google Scholar
  129. 129.
    Madhuri S, Vengadesan N, Aruna P, Koteeswaran D, Venkatesan P, Ganesan S. Native fluorescence spectroscopy of blood plasma in the characterization of oral malignancy. Photochem Photobiol. 2003;78:197–204.CrossRefGoogle Scholar
  130. 130.
    Rajasekaran R, Aruna PR, Koteeswaran D, Padmanabhan L, Muthuvelu K, Rai RR, et al. Characterization and diagnosis of cancer by native fluorescence spectroscopy of human urine. Photochem Photobiol. 2013;89:483–91.Google Scholar
  131. 131.
    Harris AT, Lungari A, Needham CJ, Smith SL, Lones MA, Fisher SE, et al. Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample. Head Neck Oncol. 2009;1:1–8.Google Scholar
  132. 132.
    Feng S, Chen R, Lin J, Pan J, Chen G, Li Y, et al. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens Bioelectron. 2010;25:2414–9.Google Scholar
  133. 133.
    Sahu A, Sawant S, Mamgain H, Krishna CM. Raman spectroscopy of serum: an exploratory study for detection of oral cancers. Analyst. 2013;138:4161–74.Google Scholar
  134. 134.
    Sahu A, Sawant S, Talathi-Desai S, Murali Krishna C. Raman spectroscopy of serum: a study on oral cancers. Biomed Spectrosc Imaging. 2015;4(2):171–87.Google Scholar
  135. 135.
    Sahu AK, Dhoot S, Singh A, Sawant SS, Nandakumar N, Talathi-Desai S et al. Oral cancer screening: serum Raman spectroscopic approach. J Biomed Opt. 2015;20:115006.Google Scholar
  136. 136.
    Sahu A, Nandakumar N, Sawant S, Krishna CM. Recurrence prediction in oral cancers: a serum Raman spectroscopy study. Analyst. 2015;140:2294–301.CrossRefGoogle Scholar
  137. 137.
    Elumalai B, Prakasarao A, Ganesan B, Dornadula K, Ganesan S. Raman spectroscopic characterization of urine of normal and oral cancer subjects. J Raman Spectrosc. 2015;46:84–93.CrossRefGoogle Scholar
  138. 138.
    Sahu A, Tawde S, Pai V, Gera P, Chaturvedi P, Nair S, et al. Raman spectroscopy and cytopathology of oral exfoliated cells for oral cancer diagnosis. Anal Methods. 2015;7:7548–59.Google Scholar
  139. 139.
    Sharwani A, Jerjes W, Salih V, Swinson B, Bigio I, El-Maaytah M, et al. Assessment of oral premalignancy using elastic scattering spectroscopy. Oral Oncol. 2006;42:343–9.Google Scholar
  140. 140.
    Stephen MM, Jayanthi JL, Unni NG, Kolady PE, Beena VT, Jeemon P, et al. Diagnostic accuracy of diffuse reflectance imaging for early detection of pre-malignant and malignant changes in the oral cavity: a feasibility study. BMC Cancer. 2013;13:1.Google Scholar
  141. 141.
    Einstein G, Udayakumar K, Aruna PR, Koteeswaran D, Ganesan S. Diffuse reflectance spectroscopy for monitoring physiological and morphological changes in oral cancer. Optik-Int J Light Electron Opt. 2016;127:1479–85.CrossRefGoogle Scholar
  142. 142.
    Prestin S, Rothschild SI, Betz CS, Kraft M. Measurement of epithelial thickness within the oral cavity using optical coherence tomography. Head Neck. 2012;34:1777–81.CrossRefGoogle Scholar
  143. 143.
    Lee CK, Chi TT, Wu CT, Tsai MT, Chiang CP, Yang CC. Diagnosis of oral precancer with optical coherence tomography. Biomed Opt Express. 2012;3:1632–46.Google Scholar
  144. 144.
    Divakar Rao K, Sahoo N, Krishna CM. Perspectives of optical coherence tomography imaging and Raman spectroscopy in cancer diagnosis. Biomed Spectrosc Imaging. 2015;4:35–55.Google Scholar
  145. 145.
    Reddy RS, Praveen KNS. Optical coherence tomography in oral cancer: a transpiring domain. J Cancer Res Ther. 2017;13:883–888.Google Scholar
  146. 146.
    Lee AM, Goldan R, Pahlevaninezhad H, Hohert G, Liu K, MacAulay CE, et al. Towards biopsy guidance of oral lesions with wide-field OCT imaging. In: Biomedical optics 2016, Fort lauderdale, Florida, 2016/04/25 2016. OSA Technical Digest (online). Opt Soc Am. p. JM4A.4.Google Scholar
  147. 147.
    Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Lyons J, Hicks D et al. In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy. Cancer Res. 2006;66:3317–22.Google Scholar
  148. 148.
    Guze K, Short M, Sonis S, Karimbux N, Chan J, Zeng H. Parameters defining the potential applicability of Raman spectroscopy as a diagnostic tool for oral disease. J Biomed Opt. 2009;14:014016-014016-014019.CrossRefGoogle Scholar
  149. 149.
    Bergholt MS, Zheng W, Huang Z. Characterizing variability in in vivo Raman spectroscopic properties of different anatomical sites of normal tissue in the oral cavity. J Raman Spectrosc. 2012;43:255–62.CrossRefGoogle Scholar
  150. 150.
    Singh S, Deshmukh A, Chaturvedi P, Krishna CM. In vivo Raman spectroscopy for oral cancers diagnosis. In: SPIE BiOS, 2012. International society for optics and photonics. p. 82190K–82190K–82196.Google Scholar
  151. 151.
    Krishna H, Majumder SK, Chaturvedi P, Gupta PK. Anatomical variability of in vivo Raman spectra of normal oral cavity and its effect on oral tissue classification. Biomed Spectrosc Imaging. 2013;2:199–217.Google Scholar
  152. 152.
    Krishna H, Majumder SK, Chaturvedi P, Sidramesh M, Gupta PK. In vivo Raman spectroscopy for detection of oral neoplasia: a pilot clinical study. J Biophotonics. 2014;7:690–702.CrossRefGoogle Scholar
  153. 153.
    Sahu A, Deshmukh A, Hole AR, Chaturvedi P, Krishna CM. In vivo subsite classification and diagnosis of oral cancers using Raman spectroscopy. J Innov Opt Health Sci. 2016;09:1650017.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chilakapati Laboratory, Advanced Center for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKhargharIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia
  3. 3.Amity Institute of Biotechnology, Amity University MumbaiPanvel, Navi MumbaiIndia

Personalised recommendations