Advertisement

Genetics and Molecular Mechanisms in Oral Cancer Progression

  • Prashanth Panta
  • Bramanandam Manavathi
  • Siddavaram Nagini
Chapter

Abstract

Exposure to tobacco in smoke or chewable form, in isolation or in association with other risk factors (i.e., alcohol or areca nut), disturbs the balanced expression of numerous genes and leads to loss of coordination of their downstream signaling pathways, finally leading to oral cancer. Initially changes like mild dysplasia and benign hyperplasia are reversible, but continuous exposure to carcinogens leads to accumulation of mutations in multiple genes involved in cell proliferation, differentiation, apoptosis, telomere maintenance, invasion, and angiogenesis, resulting in abnormal cell behavior and cell immortalization. Gains and losses occur on many chromosomal arms, and a well-characterized mutational landscape is associated with oral cancer. This chapter discusses the wide spectrum of genetic and epigenetic events that take place in oncogenes and tumor suppressor genes with special reference to oncogenic miRs (miR-21, miR-31, miR-146a, miR-134, miR-184, miR-7, miR-127, miR-518c-5p), tumor suppressor miRs (miR-200 family, miR-101, miR-26a/b, miR-29a, miR-27b, miR-137, miR-125a, miR-29a, miR-491-5p, miR-124, miR-125, miR-218, miR-99a, miR-375), and long noncoding RNA (HOTAIR, FOXCUT, MALAT1, UCA1, TUG1, CCAT2, FTH1P3, H19, HIFCAR/MIRHG) that influence oncogenic signaling pathways and enable acquisition of cancer hallmarks.

Keywords

Oral cancer Oral squamous cell carcinoma Oral cancer genetics MicroRNA Long noncoding RNA Piwi-interacting RNA Circular RNA 

References

  1. 1.
    Vucicevic Boras V, Fucic A, Virag M, Gabric D, Blivajs I, Tomasovic-Loncaric C, et al. Significance of stroma in biology of oral squamous cell carcinoma. Tumori. 2018;104:9–14.CrossRefPubMedGoogle Scholar
  2. 2.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRefPubMedGoogle Scholar
  3. 3.
    Ram H, Sarkar J, Kumar H, Konwar R, Bhatt MLB, Mohammad S. Oral cancer: risk factors and molecular pathogenesis. J Maxillofac Oral Surg. 2011;10:132–7.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333:1157–60.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Al-Hebshi NN, Li S, Nasher AT, El-Setouhy M, Alsanosi R, Blancato J, et al. Exome sequencing of oral squamous cell carcinoma in users of Arabian snuff reveals novel candidates for driver genes. Int J Cancer. 2016;139:363–72.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yi Y, Tian Z, Ju H, Ren G, Hu J. A novel NOTCH3 mutation identified in patients with oral cancer by whole exome sequencing. Int J Mol Med. 2017;39:1541–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Tabatabaeifar S, Thomassen M, Larsen MJ, Larsen SR, Kruse TA, Sørensen JA. The subclonal structure and genomic evolution of oral squamous cell carcinoma revealed by ultra-deep sequencing. Oncotarget. 2017;8:16571–80.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vincent-Chong VK, Salahshourifar I, Woo KM, Anwar A, Razali R, Gudimella R, et al. Genome wide profiling in oral squamous cell carcinoma identifies a four genetic marker signature of prognostic significance. PLoS One. 2017;12:e0174865.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.CrossRefGoogle Scholar
  10. 10.
    Martin CL, Reshmi SC, Ried T, Gottberg W, Wilson JW, Reddy JK, et al. Chromosomal imbalances in oral squamous cell carcinoma. Examination of 31 cell lines and review of the literature. Oral Oncol. 2008;44:369–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Sharma V, Nandan A, Sharma AK, Singh H, Bharadwaj M, Sinha DN, et al. Signature of genetic associations in oral cancer. Tumour Biol. 2017;39:1010428317725923.PubMedGoogle Scholar
  12. 12.
    Langevin SM, Stone RA, Bunker CH, Lyons-Weiler MA, LaFramboise WA, Kelly L, et al. MicroRNA-137promotermethylation is associated with poorer overall survival in patients with squamous cell carcinoma of the head and neck. Cancer. 2011;117:1454–62.CrossRefPubMedGoogle Scholar
  13. 13.
    Dang J, Bian YQ, Sun JY, Chen F, Dong GY, Liu Q, et al. MicroRNA-137 promoter methylation in oral lichen planus and oral squamous cell carcinoma. J Oral Pathol Med. 2013;42:315–21.CrossRefPubMedGoogle Scholar
  14. 14.
    Langevin SM, Stone RA, Bunker CH, Grandis JR, Sobol RW, Taioli E. MicroRNA-137 promoter methylation in oral rinses from patients with squamous cell carcinoma of the head and neck is associated with gender and body mass index. Carcinogenesis. 2010;31:864–70.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Morandi L, Gissi D, Tarsitano A, Asioli S, Monti V, Del Corso G, et al. DNA methylation analysis by bisulfite next-generation sequencing for early detection of oral squamous cell carcinoma and high-grade squamous intraepithelial lesion from oral brushing. J Craniomaxillofac Surg. 2015;43:1494–500.CrossRefPubMedGoogle Scholar
  16. 16.
    Sun L, Liang J, Wang Q, Li Z, Du Y, Xu X. MicroRNA-137 suppresses tongue squamous carcinoma cell proliferation, migration and invasion. Cell Prolif. 2016;49:628–35.CrossRefPubMedGoogle Scholar
  17. 17.
    Baolei W, Lei D, Wang L, Yang X, Jia S, Yang Z, et al. MiRNA-101 inhibits oral squamous-cell carcinoma growth and metastasis by targeting zinc finger E-box binding homeobox 1. Am J Cancer Res. 2016;6:1396–407.Google Scholar
  18. 18.
    Jianpei H, Chunyu W, Zhao X, Liu C. The prognostic value of decreased miR-101 in various cancers: a meta-analysis of 12 studies. Onco Targets Ther. 2017;10:3709–18.CrossRefGoogle Scholar
  19. 19.
    Ma X, Bai J, Xie G, Liu Y, Shuai X, Tao K. Prognostic significance of microRNA-101 in solid tumor: a meta-analysis. PLoS One. 2017;12:e0180173.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322:1695–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lei W, Liu Y-e, Zheng Y, AG Lin Q. MiR-429 Inhibits Oral Squamous Cell Carcinoma Growth by Targeting ZEB1. Med Sci Monit. 2015;21:383–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang CZ. Long non-coding RNA FTH1P3 facilitates oral squamous cell carcinoma progression by acting as a molecular sponge of miR-224-5p to modulate fizzled 5 expression. Gene. 2017;607:47–55.CrossRefPubMedGoogle Scholar
  24. 24.
    Fukumoto I, Hanazawa T, Kinoshita T, Kikkawa N, Koshizuka K, Goto Y, et al. MicroRNA expression signature of oral squamous cell carcinoma: functional role of microRNA-26a/b in the modulation of novel cancer pathways. Br J Cancer. 2015;112:891–900.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    He Q, Chen Z, Cabay RJ, Zhang L, Luan X, Chen D, et al. microRNA-21 and microRNA-375 from oral cytology as biomarkers for oral tongue cancer detection. Oral Oncol. 2016;57:15–20.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shi W, Yang J, Li S, Shan X, Liu X, Hua H, et al. Potential involvement of miR-375 in the premalignant progression of oral squamous cell carcinoma mediated via transcription factor KLF5. Oncotarget. 2015;6:40172–85.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Jung HM, Patel RS, Phillips BL, Wang H, Cohen DM, Reinhold WC, et al. Tumor suppressor miR-375 regulates MYC expression via repression of CIP2A coding sequence through multiple miRNA-mRNA interactions. Mol Biol Cell. 2013;24:1638–48. S1–7CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yadong W, Sun X, Song B, Qiu X, Zhao J. MiR-375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion. Cancer Med. 2017;6:1686–97.CrossRefGoogle Scholar
  29. 29.
    Jung HM, Benarroch Y, Chan EK. Anti-cancer drugs reactivate tumor suppressor miR-375 expression in tongue cancer cells. J Cell Biochem. 2015;116:836–43.CrossRefPubMedGoogle Scholar
  30. 30.
    Tsui IFL, Rosin MP, Zhang L, Ng RT, Lam WL. Multiple aberrations of chromosome 3p detected in oral premalignant lesions. Cancer Prev Res (Phila). 2008;1:424–9.CrossRefGoogle Scholar
  31. 31.
    Tanimoto K, Hayashi S, Tsuchiya E, Tokuchi Y, Kobayashi Y, Yoshiga K, et al. Abnormalities of the FHIT gene in human oral carcinogenesis. Br J Cancer. 2000;82:838–43.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tai SK, Lee JI, Ang KK, El-Naggar AK, Hassan KA, Liu D, et al. Loss of Fhit expression in head and neck squamous cell carcinoma and its potential clinical implication. Clin Cancer Res. 2004;10:5554–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Roy R, Singh R, Chattopadhyay E, Ray A, De Sarkar N, Aich R, et al. MicroRNA and target gene expression based clustering of oral cancer, precancer and normal tissues. Gene. 2016;593:58–63.Google Scholar
  34. 34.
    Jia LF, Wei SB, Gan YH, Guo Y, Gong K, Mitchelson K, et al. Expression, regulation and roles of miR-26a and MEG3 in tongue squamous cell carcinoma. Int J Cancer. 2014;135:2282–93.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang S, Zhou X, Wang B, Zhang K, Liu S, Yue K, et al. Loss of VHL expression contributes to epithelial-mesenchymal transition in oral squamous cell carcinoma. Oral Oncol. 2014;50:809–17.CrossRefPubMedGoogle Scholar
  36. 36.
    Fukuzumi M, Hamakawa H, Onishi A, Sumida T, Tanioka H. Gene expression of GLUT isoforms and VHL in oral squamous cell carcinoma. Cancer Lett. 2000;161:133–40.CrossRefPubMedGoogle Scholar
  37. 37.
    Cohen Y, Goldenberg-Cohen N, Shalmon B, Shani T, Oren S, Amariglio N, et al. Mutational analysis of PTEN/PIK3CA/AKT pathway in oral squamous cell carcinoma. Oral Oncol. 2011;47:946–50.CrossRefPubMedGoogle Scholar
  38. 38.
    Kozaki K, Imoto I, Pimkhaokham A, Hasegawa S, Tsuda H, Omura K, et al. PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma. Cancer Sci. 2006;97:1351–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Fenic I, Steger K, Gruber C, Arens C, Woenckhaus J. Analysis of PIK3CA and Akt/protein kinase B in head and neck squamous cell carcinoma. Oncol Rep. 2007;18:253–9.PubMedGoogle Scholar
  40. 40.
    Yang PY, Hsieh PL, Wang TH, Yu CC, Lu MY, Liao YW, et al. Andrographolide impedes cancer stemness and enhances radio-sensitivity in oral carcinomas via miR-218 activation. Oncotarget. 2017;8:4196–207.PubMedGoogle Scholar
  41. 41.
    Jamali Z, Asl Aminabadi N, Attaran R, Pournagiazar F, Ghertasi Oskouei S, Ahmadpour F. MicroRNAs as prognostic molecular signatures in human head and neck squamous cell carcinoma: a systematic review and meta-analysis. Oral Oncol. 2015;51:321–31.CrossRefPubMedGoogle Scholar
  42. 42.
    Peng SC, Liao CT, Peng CH, Cheng AJ, Chen SJ, Huang CG, et al. MicroRNAs MiR-218, MiR-125b, and Let-7g predict prognosis in patients with oral cavity squamous cell carcinoma. PLoS One. 2014;9:e102403.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wu DW, Chuang CY, Lin WL, Sung WW, Cheng YW, Lee H. Paxillin promotes tumor progression and predicts survival and relapse in oral cavity squamous cell carcinoma by microRNA-218 targeting. Carcinogenesis. 2014;35:1823–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Uesugi A, Kozaki K, Tsuruta T, Furuta M, Morita K, Imoto I, et al. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res. 2011;71:5765–78.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhuang Z, Hu F, Hu J, Wang C, Hou J, Yu Z, et al. MicroRNA-218 promotes cisplatin resistance in oral cancer via the PPP2R5A/Wnt signaling pathway. Oncol Rep. 2017;38:2051–61.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Boscolo-Rizzo P, Da Mosto MC, Rampazzo E, Giunco S, Del Mistro A, Menegaldo A, et al. Telomeres and telomerase in head and neck squamous cell carcinoma: from pathogenesis to clinical implications. Cancer Metastasis Rev. 2016;35:457–74.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Min BM, Baek JH, Shin KH, Gujuluva CN, Cherrick HM, Park NH. Inactivation of the p53 gene by either mutation or HPV infection is extremely frequent in human oral squamous cell carcinoma cell lines. Eur J Cancer B Oral Oncol. 1994;30B:338–45.CrossRefPubMedGoogle Scholar
  48. 48.
    Pérez-Sayáns M, Suárez-Peñaranda JM, Herranz-Carnero M, Gayoso-Diz P, Barros-Angueira F, Gándara-Rey JM, et al. The role of the adenomatous polyposis coli (APC) in oral squamous cell carcinoma. Oral Oncol. 2012;48:56–60.CrossRefPubMedGoogle Scholar
  49. 49.
    Liao PH, Lee TL, Yang LC, Yang SH, Chen SL, Chou MY. Adenomatous polyposis coli gene mutation and decreased wild-type p53 protein expression in oral submucous fibrosis: a preliminary investigation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92:202–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Kok SH, Lee JJ, Hsu HC, Chiang CP, Kuo YS, Kuo MY. Mutations of the adenomatous polyposis coli gene in areca quid and tobacco-associated oral squamous cell carcinomas in Taiwan. J Oral Pathol Med. 2002;31:395–401.CrossRefPubMedGoogle Scholar
  51. 51.
    Sikdar N, Paul RR, Panda CK, Banerjee SK, Roy B. Loss of heterozygosity at APC and MCC genes of oral cancer and leukoplakia tissues from Indian tobacco chewers. J Oral Pathol Med. 2003;32:450–4.CrossRefPubMedGoogle Scholar
  52. 52.
    Lo Muzio L. A possible role for the WNT-1 pathway in oral carcinogenesis. Crit Rev Oral Biol Med. 2001;12:152–65.CrossRefPubMedGoogle Scholar
  53. 53.
    Iwai S, Katagiri W, Kong C, Amekawa S, Nakazawa M, Yura Y. Mutations of the APC, beta-catenin, and axin 1 genes and cytoplasmic accumulation of beta-catenin in oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2005;131:773–82.CrossRefPubMedGoogle Scholar
  54. 54.
    Manikandan M, Deva Magendhra Rao AK, Arunkumar G, Manickavasagam M, Rajkumar KS, Rajaraman R, et al. Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism. Mol Cancer. 2016;15:28.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kong XP, Yao J, Luo W, Feng FK, Ma JT, Ren YP, et al. The expression and functional role of a FOXC1 related mRNA-lncRNA pair in oral squamous cell carcinoma. Mol Cell Biochem. 2014;394:177–86.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pan F, Yao J, Chen Y, Zhou C, Geng P, Mao H, et al. A novel long non-coding RNA FOXCUT and mRNA FOXC1 pair promote progression and predict poor prognosis in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7:2838–49. eCollection 2014PubMedPubMedCentralGoogle Scholar
  57. 57.
    Xu YZ, Chen FF, Zhang Y, Zhao QF, Guan XL, Wang HY, et al. The long noncoding RNA FOXCUT promotes proliferation and migration by targeting FOXC1 in nasopharyngeal carcinoma. Tumour Biol. 2017;39:1010428317706054.PubMedGoogle Scholar
  58. 58.
    Kowshik J, Baba AB, Giri H, Deepak Reddy G, Dixit M, Nagini S. Astaxanthin inhibits JAK/STAT-3 signaling to abrogate cell proliferation, invasion and angiogenesis in a hamster model of oral cancer. PLoS One. 2014;9:e109114.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Concha-Benavente F, Srivastava RM, Trivedi S, Lei Y, Chandran U, Seethala RR, et al. Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFNγ that induce PD-L1 expression in head and neck cancer. Cancer Res. 2016;76:1031–43.CrossRefPubMedGoogle Scholar
  60. 60.
    Huang JS, Yao CJ, Chuang SE, Yeh CT, Lee LM, Chen RM, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Taoudi Benchekroun M, Saintigny P, Thomas SM, El-Naggar AK, Papadimitrakopoulou V, Ren H, et al. Epidermal growth factor receptor expression and gene copy number in the risk of oral cancer. Cancer Prev Res (Phila). 2010;3:800–9.CrossRefGoogle Scholar
  62. 62.
    Lin WL, Lin YS, Shi GY, Chang CF, Wu HL. Lewisy promotes migration of oral cancer cells by glycosylation of epidermal growth factor receptor. PLoS One. 2015;10:e0120162.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16:15–31.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Stadler ME, Patel MR, Couch ME, Hayes DN. Molecular biology of head neck cancer: risks and pathways. Hematol Oncol Clin North Am. 2008;22:1099–124.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19:1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Pai RB, Pai SB, Lalitha M, Kumaraswamy SV, Lalitha N, Johnston RN, et al. Over-expression of c-Myc oncoprotein in oral squamous cell carcinoma in the South Indian population. Ecancermedicalscience. 2009;3:128.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Eversole LR, Sapp JP. c-myc oncoprotein expression in oral precancerous and early cancerous lesions. Eur J Cancer B Oral Oncol. 1993;29B:131–5.CrossRefPubMedGoogle Scholar
  68. 68.
    Arunkumar G, Murugan AK, Prasanna Srinivasa Rao H, Subbiah S, Rajaraman R, Munirajan AK. Long non-coding RNA CCAT1 is overexpressed in oral squamous cell carcinomas and predicts poor prognosis. Biomed Rep. 2017;6:455–62.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Xin Y, Li Z, Zheng H, Chan MTV, Ka Kei Wu W. CCAT2: a novel oncogenic long non-coding RNA in human cancers. Cell Prolif. 2017;50.Google Scholar
  70. 70.
    Ma Y, Hu X, Shang C, Zhong M, Guo Y. Silencing of long non-coding RNA CCAT2 depressed malignancy of oral squamous cell carcinoma via Wnt/β-catenin pathway. Tumour Biol. 2017;39:1010428317717670.PubMedGoogle Scholar
  71. 71.
    Tan J, Hou YC, Fu LN, Wang YQ, Liu QQ, Xiong H, et al. Long noncoding RNA CCAT2 as a potential novel biomarker to predict the clinical outcome of cancer patients: a meta-analysis. J Cancer. 2017;8:1498–506.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Jing X, Liang H, Cui X, Han C, Hao C, Huo K. Long noncoding RNA CCAT2 can predict metastasis and a poor prognosis: a meta-analysis. Clin Chim Acta. 2017;468:159–65.CrossRefPubMedGoogle Scholar
  73. 73.
    Ouyang S, Zhang P, Wang J, Huang Z, Liao L. Expression of long non-coding RNA colon cancer associated transcript 2 and its clinicopathologic significance in oral squamous cell carcinoma. Zhonghua Kou Qiang Yi Xue Za Zhi. 2016;51:286–91.PubMedGoogle Scholar
  74. 74.
    Zhou N, Liao W, Huang Z, Hu Z, Huang W. Qiutao Wang Overexpression of long non-coding RNA CCAT2 predicts a poor prognosis in patients with oral squamous cell carcinoma. Int J Clin Exp Pathol. 2016;9:110–7.Google Scholar
  75. 75.
    Kresty LA, Mallery SR, Knobloch TJ, Song H, Lloyd M, Casto BC, et al. Alterations of p16(INK4a) and p14(ARF) in patients with severe oral epithelial dysplasia. Cancer Res. 2002;62:5295–300.PubMedGoogle Scholar
  76. 76.
    Koscielny S, Dahse R, Ernst G, von Eggeling F. The prognostic relevance of p16 inactivation in head and neck cancer. ORL J Otorhinolaryngol Relat Spec. 2007;69:30–6.CrossRefPubMedGoogle Scholar
  77. 77.
    Ruesga MT, Acha-Sagredo A, Rodríguez MJ, Aguirregaviria JI, Videgain J, Rodríguez C, et al. p16(INK4a) promoter hypermethylation in oral scrapings of oral squamous cell carcinoma risk patients. Cancer Lett. 2007;250:140–5.CrossRefPubMedGoogle Scholar
  78. 78.
    Ohta S, Uemura H, Matsui Y, Ishiguro H, Fujinami K, Kondo K, et al. Alterations of p16 and p14ARF genes and their 9p1 locus in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:81–91.CrossRefPubMedGoogle Scholar
  79. 79.
    Yu CC, Chen PN, Peng CY, CH Y, Chou MY. Suppression of miR-204 enables oral squamous cell carcinomas to promote cancer stemness, EMT traits, and lymph node metastasis. Oncotarget. 2016;7:20180–92.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Wang X, Li F, Zhou X. miR-204-5p regulates cell proliferation and metastasis through inhibiting CXCR4 expression in OSCC. Biomed Pharmacother. 2016;82:202–7.CrossRefPubMedGoogle Scholar
  81. 81.
    Hung PS, Tu HF, Kao SY, Yang CC, Liu CJ, Huang TY, et al. miR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes. Carcinogenesis. 2014;35:1162–71.CrossRefPubMedGoogle Scholar
  82. 82.
    Lu WC, Liu CJ, Tu HF, Chung YT, Yang CC, Kao SY, et al. miR-31 targets ARID1A and enhances the oncogenicity and stemness of head and neck squamous cell carcinoma. Oncotarget. 2016;7:57254–67.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Chang KW, Kao SY, Wu YH, Tsai MM, Tu HF, Liu CJ, et al. Passenger strand miRNA miR-31* regulates the phenotypes of oral cancer cells by targeting RhoA. Oral Oncol. 2013;49:27–33.CrossRefPubMedGoogle Scholar
  84. 84.
    Kao YY, Tu HF, Kao SY, Chang KW, Lin SC. The increase of oncogenic miRNA expression in tongue carcinogenesis of a mouse model. Oral Oncol. 2015;51:1103–12.CrossRefPubMedGoogle Scholar
  85. 85.
    Shih JW, Chiang WF, Wu ATH, Wu MH, Wang LY, Yu YL a. Long noncoding RNA LncHIFCAR/MIR31HG is a HIF-1α co-activator driving oral cancer progression. Nat Commun. 2017;8:15874.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Irimie AI, Braicu C, Sonea L, Zimta AA, Cojocneanu-Petric R, Tonchev K, et al. A looking-glass of non-coding RNAs in oral cancer. Int J Mol Sci. 2017;18:E2620.CrossRefPubMedGoogle Scholar
  87. 87.
    Ha PK, Califano JA. Promoter methylation and inactivation of tumour-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol. 2006;7:77–82.CrossRefPubMedGoogle Scholar
  88. 88.
    Min A, Zhu C, Peng S, Rajthala S, Costea DE, Sapkota D. MicroRNAs as important players and biomarkers in oral carcinogenesis. Biomed Res Int. 2015;2015:186904.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Jiang L, Liu X, Chen Z, Jin Y, Heidbreder CE, Kolokythas A, et al. MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J. 2010;432:199–205.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Shen Z, Qin X, Yan M, Li R, Chen G, Zhang J, et al. Cancer-associated fibroblasts promote cancer cell growth through a miR-7-RASSF2-PAR-4 axis in the tumor microenvironment. Oncotarget. 2017;8:1290–303.PubMedGoogle Scholar
  91. 91.
    De Sarkar N, Roy R, Mitra JK, Ghose S, Chakraborty A, Paul RR, et al. A quest for miRNA bio-marker: a track back approach from gingivo buccal cancer to two different types of precancers. PLoS One. 2014;9:e104839.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Sasahira T, Kurihara M, Bhawal UK, Ueda N, Shimomoto T, Yamamoto K, et al. Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br J Cancer. 2012;107:700–6.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Yang X, Wu H, Ling T. Suppressive effect of microRNA-126 on oral squamous cell carcinoma in vitro. Mol Med Rep. 2014;10:125–30.CrossRefPubMedGoogle Scholar
  94. 94.
    Gasche JA, Goel A. Epigenetic mechanisms in oral carcinogenesis. Future Oncol. 2012;8:1407–25.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Saranath D, Chang SE, Bhoite LT, Panchal RG, Kerr IB, Mehta AR, et al. High frequency mutation in codons 12 and 61 of H-ras oncogene in chewing tobacco-related human oral carcinoma in India. Br J Cancer. 1991;63:573–8.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Moazeni-Roodi A, Allameh A, Harirchi I, Motiee-Langroudi M, Garajei A. Studies on the contribution of Cox-2 expression in the progression of oral squamous cell carcinoma and H-Ras activation. Pathol Oncol Res. 2017;23:355–60.CrossRefPubMedGoogle Scholar
  97. 97.
    Murugan AK, Munirajan AK, Tsuchida N. Ras oncogenes in oral cancer: the past 20 years. Oral Oncol. 2012;48:383–92.CrossRefPubMedGoogle Scholar
  98. 98.
    Li XF, Yin XH, Cai JW, Wang MJ, Zeng YQ, Li M, et al. Significant association between lncRNA H19 polymorphisms and cancer susceptibility: a meta-analysis. Oncotarget. 2017;8:45143–53.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Zhang DM, Lin ZY, Yang ZH, Wang YY, Wan D, Zhong JL, et al., editors. IncRNA H19 promotes tongue squamous cell carcinoma progression through β-catenin/GSK3β/EMT signaling via association with EZH2. Am J Transl Res. 2017;9:3474–86.Google Scholar
  100. 100.
    Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Matouk IJ, Halle D, Raveh E, Gilon M, Sorin V, Hochberg A. The role of the oncofetal H19 lncRNA in tumor metastasis: orchestrating the EMT-MET decision. Oncotarget. 2016;7:3748–65.CrossRefPubMedGoogle Scholar
  102. 102.
    Zhou J, Yang L, Zhong T, Mueller M, Men Y, Zhang N, et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat Commun. 2015;6:10221.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Zhong T, Men Y, Lu L, Geng T, Zhou J, Mitsuhashi A, et al. Metformin alters DNA methylation genome-wide via the H19/SAHH axis. Oncogene. 2017;36:2345–54.CrossRefPubMedGoogle Scholar
  104. 104.
    Chang SM, Hu WW. Long non-coding RNA MALAT1 promotes oral squamous cell carcinoma development via microRNA-125b/STAT3 axis. J Cell Physiol. 2018;233:3384–96.CrossRefPubMedGoogle Scholar
  105. 105.
    Zhang TH, Liang LZ, Liu XL, Wu JN, Su K, Chen JY, et al. Long non-coding RNA MALAT1 interacts with miR-124 and modulates tongue cancer growth by targeting JAG1. Oncol Rep. 2017;37:2087–94.CrossRefPubMedGoogle Scholar
  106. 106.
    Liang J, Liang L, Ouyang K, Li Z, Yi X. MALAT1 induces tongue cancer cells’ EMT and inhibits apoptosis through Wnt/β-catenin signaling pathway. J Oral Pathol Med. 2017;46:98–105.CrossRefPubMedGoogle Scholar
  107. 107.
    Zhou X, Liu S, Cai G, Kong L, Zhang T, Ren Y, et al. Long non coding RNA MALAT1 promotes tumor growth and metastasis by inducing epithelial-mesenchymal transition in oral squamous cell carcinoma. Sci Rep. 2015;5:15972.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Fang Z, Zhang S, Wang Y, Shen S, Wang F, Hao Y, et al. Long non-coding RNA MALAT-1 modulates metastatic potential of tongue squamous cell carcinomas partially through the regulation of small proline rich proteins. BMC Cancer. 2016;16:706.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Ramos-García P, Gil-Montoya JA, Scully C, Ayén A, González-Ruiz L, Navarro-Triviño FJ, et al. An update on the implications of cyclin D1 in oral carcinogenesis. Oral Dis. 2017;23:897–912.CrossRefPubMedGoogle Scholar
  110. 110.
    van Kempen PM, Noorlag R, Braunius WW, Moelans CB, Rifi W, Savola S, et al. Clinical relevance of copy number profiling in oral and oropharyngeal squamous cell carcinoma. Cancer Med. 2015;4:1525–35.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Akervall J, Borg A, Dictor M, Jin C, Jin Y, Tanner M, et al. Chromosomal translocations involving 11q13 contribute to cyclin D1 overexpression in squamous cell carcinoma of the head and neck. Int J Oncol. 2002;20:45–52.PubMedGoogle Scholar
  112. 112.
    Sathyan KM, Nalinakumari KR, Abraham T, Kannan S. CCND1 polymorphisms (A870G and C1722G) modulate its protein expression and survival in oral carcinoma. Oral Oncol. 2008;44:689–97.CrossRefPubMedGoogle Scholar
  113. 113.
    Saawarn S, Astekar M, Saawarn N, Dhakar N, Sagari SG. Cyclin D1 expression and its correlation with histopathological differentiation in oral squamous cell carcinoma. Sci World J. 2012;2012:978327.CrossRefGoogle Scholar
  114. 114.
    Angadi PV, Krishnapillai R. Cyclin D1 expression in oral squamous cell carcinoma and verrucous carcinoma: correlation with histological differentiation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103:e30–5.CrossRefPubMedGoogle Scholar
  115. 115.
    Zhao Y, Dedong Y, Li H, Nie P, Zhu Y, Liu S, et al. Cyclin D1 overexpression is associated with poor clinicopathological outcome and survival in oral squamous cell carcinoma in asian populations: insights from a meta-analysis. PLoS One. 2014;9:e93210.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Bau DT, Chang CH, Tsai MH, Chiu CF, Tsou YA, Wang RF, et al. Association between DNA repair gene ATM polymorphisms and oral cancer susceptibility. Laryngoscope. 2010;120:2417–22.CrossRefPubMedGoogle Scholar
  117. 117.
    Ma X, Sheng S, Jingbiao W, Jiang Y, Gao X, Cen X, et al. LncRNAs as an intermediate in HPV16 promoting myeloid-derived suppressor cell recruitment of head and neck squamous cell carcinoma. Oncotarget. 2017;8:42061–75.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Min SN, Wei T, Wang XT, Wu LL, Yu GY. Clinicopathological and prognostic significance of homeobox transcript antisense RNA expression in various cancers: a meta-analysis. Medicine (Baltimore). 2017;96:e7084.CrossRefPubMedCentralGoogle Scholar
  119. 119.
    Li D, Feng J, Wu T, Wang Y, Sun Y, Ren J, et al. Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am J Pathol. 2013;182:64–70.CrossRefPubMedGoogle Scholar
  120. 120.
    Li X, Wu Z, Mei Q, Li X, Guo M, Fu X, et al. Long non-coding RNA HOTAIR, a driver of malignancy, predicts negative prognosis and exhibits oncogenic activity in oesophageal squamous cell carcinoma. Br J Cancer. 2013;109:2266–78.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Wu J, Xie H. Expression of long noncoding RNA-HOX transcript antisense intergenic RNA in oral squamous cell carcinoma and effect on cell growth. Tumour Biol. 2015;36:8573–8.CrossRefPubMedGoogle Scholar
  122. 122.
    Wu Y, Zhang L, Zhang L, Wang Y, Li H, Ren X, et al. Long non-coding RNA HOTAIR promotes tumor cell invasion and metastasis by recruiting EZH2 and repressing E-cadherin in oral squamous cell carcinoma. Int J Oncol. 2015;46:2586–94.CrossRefPubMedGoogle Scholar
  123. 123.
    Lesseur C, Diergaarde B, Olshan AF, Wünsch-Filho V, Ness AR, Liu G, et al. Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer. Nat Genet. 2016;48:1544–50.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Williams HK. Molecular pathogenesis of oral squamous cell carcinoma. Mol Pathol. 2000;53:165–72.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Efthymios ARVANITIDIS, Pavlos ANDREADIS, Dimitrios ANDREADIS, Maria BELAZI, Apostolos EPIVATIANOS. Reviewing the oral carcinogenic process: key genetic events, growth factors and molecular signaling pathways. J Biol Res-Thessaloniki. 2011;16:313–36.Google Scholar
  126. 126.
    Philipone E, Yoon AJ, Wang S, Shen J, Ko YC, Sink JM, et al. MicroRNAs-208b-3p, 204-5p, 129-2-3p and 3065-5p as predictive markers of oral leukoplakia that progress to cancer. Am J Cancer Res. 2016;6:1537–46.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Wiklund ED, Gao S, Hulf T, Sibbritt T, Nair S, Costea DE, et al. MicroRNA Alterations and Associated Aberrant DNA Methylation Patterns across Multiple Sample Types in Oral Squamous Cell Carcinoma. PLoS One. 2011;6:e27840.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Lajer CB, Nielsen FC, Friis-Hansen L, Norrild B, Borup R, Garnæs E, et al. Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: a prospective translational study. Br J Cancer. 2011;104:830–40.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Mondal T, Subhash S, Vaid R, Enroth S, Uday S, Reinius B, et al. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures. Nat Commun. 2015;6:7743.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Liu Z, Wu C, Xie N, Wang P. Longnon-codingRNAMEG3inhibits the proliferation and metastasis of oral squamous cell carcinoma by regulating the WNT/β-catenin signaling pathway. Oncol Lett. 2017;14:4053–8.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Pimenta FJ, Gomes DA, Perdigão PF, Barbosa AA, Romano-Silva MA, Gomez MV, et al. Characterization of the tumor suppressor gene WWOX in primary human oral squamous cell carcinomas. Int J Cancer. 2006;118:1154–8.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Cheng HL, Liu YF, Su CW, Su SC, Chen MK, Yang SF, et al. Functional genetic variant in the Kozak sequence of WW domain-containing oxidoreductase (WWOX) gene is associated with oral cancer risk. Oncotarget. 2016;7:69384–96.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Pimenta FJ, Cordeiro GT, Pimenta LG, Viana MB, Lopes J, Gomez MV, et al. Molecular alterations in the tumor suppressor gene WWOX in oral leukoplakias. Oral Oncol. 2008;44:753–8.CrossRefPubMedGoogle Scholar
  134. 134.
    Dincer N, Tezel GG, Sungur A, Himmetoglu C, Huebner K, Güler G. Study of FHIT and WWOX expression in mucoepidermoid carcinoma and adenoid cystic carcinoma of salivary gland. Oral Oncol. 2010;46:195–9.CrossRefPubMedGoogle Scholar
  135. 135.
    Gomes CC, Diniz MG, Oliveira CS, Tavassoli M, Odell EW, Gomez RS, et al. Impact of WWOX alterations on p73, ΔNp73, p53, cell proliferation and DNA ploidy in salivary gland neoplasms. Oral Dis. 2011;17:564–71.CrossRefPubMedGoogle Scholar
  136. 136.
    Tsai CW, Lai FJ, Sheu HM, Lin YS, Chang TH, Jan MS, et al. WWOX suppresses autophagy for inducing apoptosis in methotrexate-treated human squamous cell carcinoma. Cell Death Dis. 2013;4:e792.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI. Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res. 2008;14:2588–92.CrossRefPubMedGoogle Scholar
  138. 138.
    Santhi WS, Prathibha R, Charles S, Anurup KG, Reshmi G, Ramachandran S, et al. Oncogenic microRNAs as biomarkers of oral tumorigenesis and minimal residual disease. Oral Oncol. 2013;49:567–75.CrossRefPubMedGoogle Scholar
  139. 139.
    Manikandan M, Deva Magendhra Rao AK, Rajkumar KS, Rajaraman R, Munirajan AK. Altered levels of miR-21, miR-125b-2*, miR-138, miR-155, miR-184, and miR-205 in oral squamous cell carcinoma and association with clinicopathological characteristics. J Oral Pathol Med. 2015;44:792–800.CrossRefPubMedGoogle Scholar
  140. 140.
    Lu L, Xue X, Lan J, Gao Y, Xiong Z, Zhang H, et al. MicroRNA-29a upregulates MMP2 in oral squamous cell carcinoma to promote cancer invasion and anti-apoptosis. Biomed Pharmacother. 2014;68:13–9.CrossRefGoogle Scholar
  141. 141.
    Pannone G, Santoro A, Feola A, Bufo P, Papagerakis P, Lo Muzio L, et al. The role of E-cadherin down-regulation in oral cancer: CDH1 gene expression and epigenetic blockage. Curr Cancer Drug Targets. 2014;14:115–27.CrossRefPubMedGoogle Scholar
  142. 142.
    Heinzel PA, Balaram P, Bernard HU. Mutations and polymorphisms in the p53, p21 and p16 genes in oral carcinomas of Indian betel quid chewers. Int J Cancer. 1996;68:420–3.CrossRefPubMedGoogle Scholar
  143. 143.
    Poeta ML, Manola J, Goldwasser MA, Forastiere A, Benoit N, Califano JA, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357:2552–61.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Li Y, Zhang J. Expression of mutant p53 in oral squamous cell carcinoma is correlated with the effectiveness of intra-arterial chemotherapy. Oncol Lett. 2015;10:2883–7.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Wang W, Peng B, Wang D, Ma X, Jiang D, Zhao J, et al. Human tumor microRNA signatures derived from large-scale oligonucleotide microarray datasets. Int J Cancer. 2011;129:1624–34.CrossRefPubMedGoogle Scholar
  146. 146.
    Zhang J, Qin X, Sun Q, Guo H, Wu X, Xie F, et al. Transcriptional control of PAX4-regulated miR-144/451 modulates metastasis by suppressing ADAMs expression. Oncogene. 2015;34:3283–95.CrossRefPubMedGoogle Scholar
  147. 147.
    Hedbäck N, Jensen DH, Specht L, Fiehn AM, Therkildsen MH, Friis-Hansen L, et al. MiR-21 expression in the tumor stroma of oral squamous cell carcinoma: an independent biomarker of disease free survival. PLoS One. 2014;9:e95193.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 2016;76:1770–80.CrossRefPubMedGoogle Scholar
  149. 149.
    Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Investig. 2010;90:144–55.CrossRefPubMedGoogle Scholar
  150. 150.
    Cervigne NK, Reis PP, Machado J, Sadikovic B, Bradley G, Galloni NN, et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet. 2009;18:4818–29.CrossRefPubMedGoogle Scholar
  151. 151.
    Supic G, Zeljic K, Rankov AD, Kozomara R, Nikolic A, Radojkovic D, et al. miR-183 and miR-21 expression as biomarkers of progression and survival in tongue carcinoma patients. Clin Oral Investig. 2018;22:401–9.CrossRefPubMedGoogle Scholar
  152. 152.
    Yan ZY, Luo ZQ, Zhang LJ, Li J, Liu JQ. Integrated analysis and microRNA expression profiling identified seven miRNAs associated with progression of oral squamous cell carcinoma. J Cell Physiol. 2017;232:2178–85.CrossRefPubMedGoogle Scholar
  153. 153.
    Jung HM, Phillips BL, Patel RS, Cohen DM, Jakymiw A, Kong WW, et al. Keratinization-associated miR-7 and miR-21 regulate tumor suppressor reversion-inducing cysteine-rich protein with kazal motifs (RECK) in oral cancer. J Biol Chem. 2012;287:29261–72.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Yu EH, Tu HF, Wu CH, Yang CC, Chang KW. MicroRNA-21 promotes perineural invasion and impacts survival in patients with oral carcinoma. J Chin Med Assoc. 2017;80:383–8.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Kowshik J, Mishra R, Sophia J, Rautray S, Anbarasu K, Reddy GD. Nimbolide upregulates RECK by targeting miR-21 and HIF-1α in cell lines and in a hamster oral carcinogenesis model. Sci Rep. 2017;7:2045.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene. 2008;27:6398–406.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Cory S, Huang DC, Adams JM. The Bcl-2family: roles in cell survival and oncogenesis. Oncogene. 2003;22:8590–607.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Gibson SA, Pellenz C, Hutchison RE, Davey FR, Shillitoe EJ. Induction of apoptosis in oral cancer cells by an anti-bcl-2 ribozyme delivered by an adenovirus vector. Clin Cancer Res. 2000;6:213–22.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Yang YT, Wang YF, Lai JY, Shen SY, Wang F, Kong J, et al. Long non-coding RNA UCA1 contributes to the progression of oral squamous cell carcinoma by regulating the WNT/β-catenin signaling pathway. Cancer Sci. 2016;107:1581–9.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Liang S, Zhang S, Wang P, Yang C, Shang C, Yang J, et al. LncRNA, TUG1 regulates the oral squamous cell carcinoma progression possibly via interacting with Wnt/β-catenin signaling. Gene. 2017;608:49–57.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Li ZQ, Zou R, Ouyang KX, Ai WJ. An in vitro study of the long non-coding RNA TUG1 in tongue squamous cell carcinoma. J Oral Pathol Med. 2017;46:956–60.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Castagnola P, Malacarne D, Scaruffi P, Maffei M, Donadini A, Di Nallo E, et al. Chromosomal aberrations and aneuploidy in oral potentially malignant lesions: distinctive features for tongue. BMC Cancer. 2011;11:445.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Ribeiro IP, Marques F, Caramelo F, Pereira J, Patrício M, Prazeres H, et al. Genetic gains and losses in oral squamous cell carcinoma: impact on clinical management. Cell Oncol (Dordr). 2014;37:29–39.CrossRefGoogle Scholar
  164. 164.
    Shridhar K, Aggarwal A, Walia GK, Gulati S, Geetha AV, Prabhakaran D, et al. Single nucleotide polymorphisms as markers of genetic susceptibility for oral potentially malignant disorders risk: review of evidence to date. Oral Oncol. 2016;61:146–51.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Multani S, Saranath D. Genotypic distribution of single nucleotide polymorphisms in oral cancer: global scene. Tumour Biol. 2016;37:14501–12. Epub 2016 Sep 20CrossRefGoogle Scholar
  166. 166.
    Hsu HJ, Yang YH, Shieh TY, Chen CH, Kao YH, Yang CF, et al. TGF-β1 and IL-10 single nucleotide polymorphisms as risk factors for oral cancer in Taiwanese. Kaohsiung J Med Sci. 2015;31:123–9.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Chou CH, Hsieh MJ, Chuang CY, Lin JT, Yeh CM, Tseng PY, et al. Functional FGFR4 Gly388Arg polymorphism contributes to oral squamous cell carcinoma susceptibility. Oncotarget. 2017;8:96225–38.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Sun W, Lv W, Lv H, Zhang R, Jiang Y. Genome-wide haplotype association analysis identifies SERPINB9, SERPINE2, GAK, and HSP90B1 as novel risk genes for oral squamous cell carcinoma. Tumour Biol. 2016;37:1845–51.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Hsieh CH, Chang JW, Hsieh JJ, Hsu T, Huang SF, Liao CT, et al. Epidermal growth factor receptor mutations in patients with oral cavity cancer in a betel nut chewing-prevalent area. Head Neck. 2011;33:1758–64.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Xie X, Wang Z, Chen F, Yuan Y, Wang J, Liu R, Chen Q. Roles of FGFR in oral carcinogenesis. Cell Prolif. 2016;49:261–9.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Brands RC, Köhler O, Rauthe S, Hartmann S, Ebhardt H, Seher A, et al. The prognostic value of GLUT-1 staining in the detection of malignant transformation in oral mucosa. Clin Oral Investig. 2017;21:1631–7.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Chen C, Shin JH, Eggold JT, Chung MK, Zhang LH, Lee J. ESM1 mediates NGFR-induced invasion and metastasis in murine oral squamous cell carcinoma. Oncotarget. 2016;7:70738–49.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Nayak S, Goel MM, Makker A, Bhatia V, Chandra S, Kumar S, et al. Fibroblast growth factor (FGF-2) and its receptors FGFR-2 and FGFR-3 may be putative biomarkers of malignant transformation of potentially malignant oral lesions into oral squamous cell carcinoma. PLoS One. 2015;10:e0138801.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Lin Q, Ma L, Liu Z, Yang Z, Wang J, Liu J, Jiang G. Targeting microRNAs: a new action mechanism of natural compounds. Oncotarget. 2017;8:15961–70.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Al-Kaabi A, van Bockel LW, Pothen AJ, Willems SM. p16INK4A and p14ARF gene promoter hypermethylation as prognostic biomarker in oral and oropharyngeal squamous cell carcinoma: a review. Dis Markers. 2014;2014:260549.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Edwards JR, Yarychkivska O, Boulard M, Bestor TH. DNA methylation and DNA methyltransferases. Epigenetics Chromatin. 2017;10:23.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Soga D, Yoshiba S, Shiogama S, Miyazaki H, Kondo S, Shintani S. microRNA expression profiles in oral squamous cell carcinoma. Oncol Rep. 2013;30:579–83.CrossRefPubMedGoogle Scholar
  178. 178.
    Gomes CC, de Sousa SF, Calin GA, Gomez RS. The emerging role of long noncoding RNAs in oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123:235–41.CrossRefPubMedGoogle Scholar
  179. 179.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.CrossRefPubMedGoogle Scholar
  180. 180.
    Manasa VG, Kannan S. Impact of microRNA dynamics on cancer hallmarks: an oral cancer scenario. Tumour Biol. 2017;39:1010428317695920.CrossRefPubMedGoogle Scholar
  181. 181.
    Hung KF, Liu CJ, Chiu PC, Lin JS, Chang KW, Shih WY, et al. MicroRNA-31 upregulation predicts increased risk of progression of oral potentially malignant disorder. Oral Oncol. 2016;53:42–7.CrossRefPubMedGoogle Scholar
  182. 182.
    Hung PS, Chang KW, Kao SY, Chu TH, Liu CJ, Lin SC. Association between the rs2910164 polymorphism in pre-mir-146a and oral carcinoma progression. Oral Oncol. 2012;48:404–8.CrossRefPubMedGoogle Scholar
  183. 183.
    Liu CJ, Shen WG, Peng SY, Cheng HW, Kao SY, Lin SC, et al. miR-134inducesoncogenicity and metastasis in head and neck carcinoma through targeting WWOX gene. Int J Cancer. 2014;134:811–21.CrossRefPubMedGoogle Scholar
  184. 184.
    Kinouchi M, Uchida D, Kuribayashi N, Tamatani T, Nagai H, Miyamoto Y. Involvement of miR-518c-5p to growth and metastasis in oral cancer. PLoS One. 2014;9:e115936.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Gelmini S, Mangoni M, Serio M, Romagnani P, Lazzeri E. The critical role of SDF-1/CXCR4 axis in cancer and cancer stem cells metastasis. J Endocrinol Investig. 2008;31:809–19.CrossRefGoogle Scholar
  186. 186.
    Kasamatsu A, Endo Y, Uzawa K, Nakashima D, Koike H, Hashitani S, et al. Identification of candidate genes associated with salivary adenoid cystic carcinomas using combined comparative genomic hybridization and oligonucleotide microarray analyses. Int J Biochem Cell Biol. 2005;37:1869–80.CrossRefPubMedGoogle Scholar
  187. 187.
    Nobusawa S, Yokoo H, Hirato J, Kakita A, Takahashi H, Sugino T, Tasaki K, et al. Analysis of chromosome 19q13.42 amplification in embryonal brain tumors with ependymoblastic multilayered rosettes. Brain Pathol. 2012;22:689–97.CrossRefPubMedGoogle Scholar
  188. 188.
    Tiwari A, Shivananda S, Gopinath KS, Kumar A. MicroRNA-125a reduces proliferation and invasion of oral squamous cell carcinoma cells by targeting estrogen-related receptor α. J Biol Chem. 2014;289:32276–90.CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Huang WC, Chan SH, Jang TH, Chang JW, Ko YC, Yen TC, et al. miRNA-491-5p and GIT1 serve as modulators and biomarkers for oral squamous cell carcinoma invasion and metastasis. Cancer Res. 2014;74:751–64.CrossRefPubMedGoogle Scholar
  190. 190.
    Coutinho-Camillo CM, Lourenço SV, de Araújo Lima L, Kowalski LP, Soares FA. Expression of apoptosis-regulating miRNAs and target mRNAs in oral squamous cell carcinoma. Cancer Gene Ther. 2015;208:382–9.CrossRefGoogle Scholar
  191. 191.
    Serrano NA, Xu C, Liu Y, Wang P, Fan W, Upton MP, Houck JR, et al. Integrative analysis in oral squamous cell carcinoma reveals DNA copy number-associated miRNAs dysregulating target genes. Otolaryngol Head Neck Surg. 2012;147:501–8.CrossRefPubMedGoogle Scholar
  192. 192.
    Roy R, De Sarkar N, Ghose S, Paul RR, Pal M, Bhattacharya C, et al. Genetic variations at microRNA and processing genes and risk of oral cancer. Tumour Biol. 2014;35:3409–14.CrossRefPubMedGoogle Scholar
  193. 193.
    Yu T, Wang XY, Gong RG, Li A, Yang S, Cao YT, et al. The expression profile of microRNAs in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster. J Exp Clin Cancer Res. 2009;28:64.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Maclellan SA, Lawson J, Baik J, Guillaud M, Poh CF, Garnis C. Differential expression of miRNAs in the serum of patients with high-risk oral lesions. Cancer Med. 2012;1:268–74.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Hunt S, Jones AV, Hinsley EE, Whawell SA, Lambert DW. MicroRNA-124 suppresses oral squamous cell carcinoma motility by targeting ITGB1. FEBS Lett. 2011;585:187–92.CrossRefPubMedGoogle Scholar
  196. 196.
    Zhao Y, Ling Z, Hao Y, Pang X, Han X, Califano JA, et al. MiR-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma. Oncotarget. 2017;8:25005–20.PubMedPubMedCentralGoogle Scholar
  197. 197.
    Hu H, Wang G, Li C. miR-124 suppresses proliferation and invasion of nasopharyngeal carcinoma cells through the Wnt/β-catenin signaling pathway by targeting Capn4. Onco Targets Ther. 2017;10:2711–20.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Chen Z, Jin Y, Yu D, Wang A, Mahjabeen I, Wang C, et al. Down-regulation of the microRNA-99 family members in head and neck squamous cell carcinoma. Oral Oncol. 2012;48:686–91.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Chen D, Chen Z, Jin Y, Dragas D, Zhang L, Adjei BS, et al. MicroRNA-99 family members suppress Homeobox A1 expression in epithelial cells. PLoS One. 2013;8:e80625.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Yen YC, Shiah SG, Chu HC, Hsu YM, Hsiao JR, Chang JY, et al. Reciprocal regulation of microRNA-99a and insulin-like growth factor I receptor signaling in oral squamous cell carcinoma cells. Mol Cancer. 2014;13:6.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Yan B, Fu Q, Lai L, Tao X, Fei Y, Shen J, et al. Downregulation of microRNA 99a in oral squamous cell carcinomas contributes to the growth and survival of oral cancer cells. Mol Med Rep. 2012;6:675–81.CrossRefPubMedGoogle Scholar
  202. 202.
    Bamezai S, Rawat VP, Buske C. Concise review: the Piwi-piRNA axis—pivotal beyond transposon silencing. Stem Cells. 2012;30:2603–11.CrossRefPubMedGoogle Scholar
  203. 203.
    Krishnan AR, Korrapati A, Zou AE, Qu Y, Wang XQ, Califano JA, et al. Smoking status regulates a novel panel of PIWI-interacting RNAs in head and neck squamous cell carcinoma. Oral Oncol. 2017;65:68–75.CrossRefPubMedGoogle Scholar
  204. 204.
    Firmino N, Martinez VD, Rowbotham DA, Enfield KSS, Bennewith KL, Lam WL. HPV status is associated with altered PIWI-interacting RNA expression pattern in head and neck cancer. Oral Oncol. 2016;55:43–8.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Chen L, Zhang S, Wu J, Cui J, Zhong L, Zeng L, et al. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene. 2017;36:4551–61.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Li X, Cao Y, Gong X, Li H. Long noncoding RNAs in head and neck cancer. Oncotarget. 2017;8:10726–40.PubMedGoogle Scholar
  207. 207.
    Nohata N, Abba MC, Gutkind JS. Unraveling the oral cancer lncRNAome: identification of novel lncRNAs associated with malignant progression and HPV infection. Oral Oncol. 2016;59:58–66.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Feng L, Houck JR, Lohavanichbutr P, Chen C. Transcriptome analysis reveals differentially expressed lncRNAs between oral squamous cell carcinoma and healthy oral mucosa. Oncotarget. 2017;8:31521–31.PubMedPubMedCentralGoogle Scholar
  209. 209.
    Gao W, Chan JY, Wong TS. Long non-coding RNA deregulation in tongue squamous cell carcinoma. Biomed Res Int. 2014;2014:405860.PubMedPubMedCentralGoogle Scholar
  210. 210.
    Ballarino M, Cazzella V, D’Andrea D, Grassi L, Bisceglie L, Cipriano A, et al. Novel long noncoding RNAs (lncRNAs) in myogenesis: a miR-31 overlapping lncRNA transcript controls myoblast differentiation. Mol Cell Biol. 2015;35:728–36.CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Yang H, Liu P, Zhang J, Peng X, Lu Z, Yu S, et al. Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR-193b. Oncogene. 2016;35:3647–57.CrossRefPubMedGoogle Scholar
  212. 212.
    Montes M, Nielsen MM, Maglieri G, Jacobsen A, Højfeldt J, Agrawal-Singh S, et al. The lncRNA MIR31HG regulates p16(INK4A) expression to modulate senescence. Nat Commun. 2015;6:6967.CrossRefPubMedGoogle Scholar
  213. 213.
    Pawson T, Warner N. Oncogenic re-wiring of cellular signaling pathways. Oncogene. 2007;26:1268–75.CrossRefPubMedGoogle Scholar
  214. 214.
    Yedida GR, Nagini S, Mishra R. The importance of oncogenic transcription factors for oral cancer pathogenesis and treatment. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116:179–88.CrossRefPubMedGoogle Scholar
  215. 215.
    Wu F, Weigel KJ, Wang XJ. Paradoxical roles of TGF-β signaling in suppressing and promoting squamous cell carcinoma. Acta Biochim Biophys Sin Shanghai. 2017;50:1–8.Google Scholar
  216. 216.
    Nagini S, Tanagala KKK, Chattopadhyay I. NF-κB inhibitors in head and neck cancer. Lett Drug Des Discov. 2017;14(5):619.Google Scholar
  217. 217.
    Huang W, Cui X, Chen J, Feng Y, Song E, Li J, et al. Long non-coding RNA NKILA inhibits migration and invasion of tongue squamous cell carcinoma cells via suppressing epithelial-mesenchymal transition. Oncotarget. 2016;7:62520–32.PubMedPubMedCentralGoogle Scholar
  218. 218.
    Shiah SG, Shieh YS, Chang JY. The role of wnt signaling in squamous cell carcinoma. J Dent Res. 2016;95:129–34.CrossRefPubMedGoogle Scholar
  219. 219.
    González-Moles MA, Ruiz-Ávila I, Gil-Montoya JA, Plaza-Campillo J, Scully C. β-catenin in oral cancer: an update on current knowledge. Oral Oncol. 2014;50:818–24.CrossRefPubMedGoogle Scholar
  220. 220.
    Tsuchiya R, Yamamoto G, Nagoshi Y, Aida T, Irie T, Tachikawa T. Expression of adenomatous polyposis coli (APC) in tumorigenesis of human oral squamous cell carcinoma. Oral Oncol. 2004;40:932–40.CrossRefPubMedGoogle Scholar
  221. 221.
    Ishida K, Ito S, Wada N, Deguchi H, Hata T, Hosoda M, Nohno T. Nuclear localization of beta-catenin involved in precancerous change in oral leukoplakia. Mol Cancer. 2007;6:62.CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Mishra R, Nagini S, Rana A. Expression and inactivation of glycogen synthase kinase 3 alpha/ beta and their association with the expression of cyclin D1 and p53 in oral squamous cell carcinoma progression. Mol Cancer. 2015;14:20.CrossRefPubMedPubMedCentralGoogle Scholar
  223. 223.
    Gkouveris I, Nikitakis NG. Role of JNK signaling in oral cancer: a mini review. Tumour Biol. 2017;39:1010428317711659.CrossRefPubMedGoogle Scholar
  224. 224.
    Cash H, Shah S, Moore E, Caruso A, Uppaluri R, Van Waes C, et al. mTOR and MEK1/2 inhibition differentially modulate tumor growth and the immune microenvironment in syngeneic models of oral cavity cancer. Oncotarget. 2015;6:36400–17.CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Aktipis CA, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC, et al. Cancer across the tree of life: cooperation and cheating in multicellularity. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20140219.CrossRefGoogle Scholar
  226. 226.
    Saunders WS, Shuster M, Huang X, Gharaibeh B, Enyenihi AH, Petersen I, et al. Chromosomal instability and cytoskeletal defects in oral cancer cells. Proc Natl Acad Sci U S A. 2000;97:303–8.CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Thirthagiri E, Robinson CM, Huntley S, Davies M, Yap LF, Prime SS, et al. Spindle assembly checkpoint and centrosome abnormalities in oral cancer. Cancer Lett. 2007;258:276–85.CrossRefPubMedGoogle Scholar
  228. 228.
    Mondal G, Sengupta S, Panda CK, Gollin SM, Saunders WS, Roychoudhury S. Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer. Carcinogenesis. 2007;28:81–9.CrossRefPubMedGoogle Scholar
  229. 229.
    Okamoto A, Higo M, Shiiba M, Nakashima D, Koyama T, Miyamoto I, et al. Down-regulation of nucleolar and spindle-associated Protein 1 (NUSAP1) expression suppresses tumor and cell proliferation and enhances anti-tumor effect of paclitaxel in oral squamous cell carcinoma. PLoS One. 2015;10:e0142252.CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Gramatges MM, Bertuch AA. Short telomeres: from dyskeratosis congenita to sporadic aplastic anemia and malignancy. Transl Res. 2013;162:353–63.CrossRefPubMedGoogle Scholar
  231. 231.
    Bertuch AA. The molecular genetics of the telomere biology disorders. RNA Biol. 2016;13:696–706.CrossRefPubMedGoogle Scholar
  232. 232.
    Rai A, Naikmasur VG, Sattur A. Quantification of telomerase activity in normal oral mucosal tissue and oral squamous cell carcinoma. Indian J Med PaediatrOncol. 2016;37:183–8.CrossRefGoogle Scholar
  233. 233.
    Raghunandan BN, Sanjai K, Kumaraswamy J, Papaiah L, Pandey B, Jyothi BM. Expression of human telomerase reverse transcriptase protein in oral epithelial dysplasia and oral squamous cell carcinoma: an immunohistochemical study. J Oral MaxillofacPathol. 2016;20:96–101.Google Scholar
  234. 234.
    Benhamou Y, Picco V, Pagès G. The telomere proteins in tumorigenesis and clinical outcomes of oral squamous cell carcinoma. Oral Oncol. 2016;57:46–53.CrossRefPubMedGoogle Scholar
  235. 235.
    Loro LL, Johannessen AC, Vintermyr OK. Loss of BCL-2 in the progression of oral cancer is not attributable to mutations. J Clin Pathol. 2005;58:1157–62.CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Fillies T, Jogschies M, Kleinheinz J, Brandt B, Joos U, Buerger H. Cytokeratin alteration in oral leukoplakia and oral squamous cell carcinoma. Oncol Rep. 2007;18:639–43.PubMedGoogle Scholar
  237. 237.
    Fillies T, Werkmeister R, Packeisen J, Brandt B, Morin P, Weingart D, et al. Cytokeratin 8/18 expression indicates a poor prognosis in squamous cell carcinomas of the oral cavity. BMC Cancer. 2006;6:10.CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    ohnishi Y, watanabe M, yasui H, kakudo K. Effects of epidermal growth factor on the invasive activity and cytoskeleton of oral squamous cell carcinoma cell lines. Oncol Lett. 2014;7:1439–42.CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Ogden GR, Lane EB, Hopwood DV, Chisholm DM. Evidence for field change in oral cancer based on cytokeratin expression. Br J Cancer. 1993;67:1324–30.CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Ogden GR, McQueen S, Chisholm DM, Lane EB. Keratin profiles of normal and malignant oral mucosa using exfoliative cytology. J Clin Pathol. 1993;46:352–6.CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Alblazi KM, Siar CH. Cellular protrusions--lamellipodia, filopodia, invadopodia and podosomes--and their roles in progression of orofacial tumours: current understanding. Asian Pac J Cancer Prev. 2015;16:2187–91.CrossRefPubMedGoogle Scholar
  242. 242.
    Saito S, Yamamoto H, Mukaisho K-i, Sato S, Higo T, Hattori T, et al. Mechanisms underlying cancer progression caused by ezrin overexpression in tongue squamous cell carcinoma. PLoS One. 2013;8:e54881.CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Collins RJ, Jiang WG, Hargest R, Mason MD, Sanders AJ. EPLIN: a fundamental actin regulator in cancer metastasis? Cancer Metastasis Rev. 2015;34:753–64.CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol. 2002;3:586–99.CrossRefPubMedGoogle Scholar
  245. 245.
    Schlecht NF, Brandwein-Gensler M, Smith RV, Kawachi N, Broughel D, Lin J, et al. Cytoplasmic ezrin and moesin correlate with poor survival in head and neck squamous cell carcinoma. Head Neck Pathol. 2012;6:232–43.CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Wheeler AP, Ridley AJ. Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res. 2004;301:43–9.CrossRefPubMedGoogle Scholar
  247. 247.
    Li YY, Zhou CX, Gao Y. Snail regulates the motility of oral cancer cells via RhoA/Cdc42/p-ERM pathway. Biochem Biophys Res Commun. 2014;452:490–6.CrossRefPubMedGoogle Scholar
  248. 248.
    Thomas GJ, Speight PM. Cell adhesion molecules and oral cancer. Crit Rev Oral Biol Med. 2001;12:479–98.CrossRefPubMedGoogle Scholar
  249. 249.
    Nagata M, Noman AA, Suzuki K, Kurita H, Ohnishi M, Ohyama T, et al. ITGA3 and ITGB4expressionbiomarkersestimate the risks of locoregional and hematogenous dissemination of oral squamous cell carcinoma. BMC Cancer. 2013;13:410.CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Bandyopadhyay A, Raghavan S. Defining the Role of Integrin αvβ6 in Cancer. Curr Drug Targets. 2009;10:645–52.CrossRefPubMedPubMedCentralGoogle Scholar
  251. 251.
    Veeravarmal V, Austin RD, Nagini S, MHM N. Expression of β1integrin in normal epithelium, oral submucous fibrosis and oral squamous cell carcinoma. Pathol Res Pract. 2017;214:273–80.CrossRefPubMedGoogle Scholar
  252. 252.
    Luo SL, Xie YG, Li Z, Ma JH, Xu X. E-cadherin expression and prognosis of oral cancer: a meta-analysis. Tumour Biol. 2014;35:5533–7.CrossRefPubMedGoogle Scholar
  253. 253.
    Krisanaprakornkit S, Iamaroon A. Epithelial-mesenchymal transition in oral squamous cell carcinoma. ISRN Oncol. 2012;2012:681469.PubMedPubMedCentralGoogle Scholar
  254. 254.
    Qiao B, Johnson NW, Gao J. Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-beta1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions. Int J Oncol. 2010;37:663–8.PubMedGoogle Scholar
  255. 255.
    Zhou J, Tao D, Xu Q, Gao Z, Tang D. Expression of E-cadherin and vimentin in oral squamous cell carcinoma. Int J Clin Exp Pathol. 2015;8:3150–4.PubMedPubMedCentralGoogle Scholar
  256. 256.
    Nguyen PT, Kudo Y, Yoshida M, Kamata N, Ogawa I, Takata T. N-cadherin expression is involved in malignant behavior of head and neck cancer in relation to epithelial-mesenchymal transition. Histol Histopathol. 2011;26:147–56.PubMedGoogle Scholar
  257. 257.
    Lyons AJ, Jones J. Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma. Int J Oral Maxillofac Surg. 2007;36:671–9.CrossRefPubMedGoogle Scholar
  258. 258.
    Usami Y, Ishida K, Sato S, Kishino M, Kiryu M, Ogawa Y, et al. Intercellular adhesion molecule-1 (ICAM-1) expression correlates with oral cancer progression and induces macrophage/cancer cell adhesion. Int J Cancer. 2013;133:568–78.CrossRefPubMedGoogle Scholar
  259. 259.
    Tang W, Wang Y, Chen Y, Haiyong G, Chen S, Kang M. Polymorphisms in the intercellular adhesion molecule 1 gene and cancer risk: a meta-analysis. Int J Clin Exp Med. 2015;8:11996–2008.PubMedPubMedCentralGoogle Scholar
  260. 260.
    Cheng D, Liang B. Intercellular adhesion molecule-1 (ICAM-1) polymorphisms and cancer risk: a meta-analysis. Iran J Public Health. 2015;44:615–24.PubMedPubMedCentralGoogle Scholar
  261. 261.
    Pramanik KK, Nagini S, Singh AK, Mishra P, Kashyap T, Nath N, et al. Glycogen synthase kinase-3β mediated regulation of matrixmetalloproteinase-9 and its involvement in oral squamous cell carcinoma progression and invasion. Cell Oncol (Dordr). 2018;41:47–60.CrossRefGoogle Scholar
  262. 262.
    Pereira AC, do Carmo ED, da Silva MAD, Rosa LEB. Matrix metalloproteinase gene polymorphisms and oral cancer. J Clin Exp Dent. 2012;4:e297–301.CrossRefPubMedPubMedCentralGoogle Scholar
  263. 263.
    Wong RJ, Keel SB, Glynn RJ, Varvares MA. Histological pattern of mandibular invasion by oral squamous cell carcinoma. Laryngoscope. 2000;110:65–72.CrossRefPubMedGoogle Scholar
  264. 264.
    Shin M, Matsuo K, Tada T, Fukushima H, Furuta H, Ozeki S, Kadowaki T, Yamamoto K, Okamoto M, Jimi E. The inhibition of RANKL/RANK signaling by osteoprotegerin suppresses bone invasion by oral squamous cell carcinoma cells. Carcinogenesis. 2011;32:1634–40.CrossRefPubMedGoogle Scholar
  265. 265.
    Cannonier SA, Gonzales CB, Ely K, Guelcher SA, Sterling JA. Hedgehog and TGFβ signaling converge on Gli2 to control bony invasion and bone destruction in oral squamous cell carcinoma. Oncotarget. 2016;7:76062–75.CrossRefPubMedPubMedCentralGoogle Scholar
  266. 266.
    Takes RP, Rinaldo A, Silver CE, Haigentz M Jr, Woolgar JA, Triantafyllou A et al. Distant metastases from head and neck squamous cell carcinoma. Part I. Basic aspects. Oral Oncol. 2012;48:775–9.Google Scholar
  267. 267.
    Martell K, Simpson R, Skarsgard D. Solitary myocardial metastasis from locoregionally controlled squamous cell carcinoma of the oral cavity. Cureus. 2016;8:e650.PubMedPubMedCentralGoogle Scholar
  268. 268.
    Noguti J, De Moura CF, De Jesus GP, Da Silva VH, Hossaka TA, Oshima CT, et al. Metastasis from oral cancer: an overview. Cancer Genomics Proteomics. 2012;9:329–35.PubMedGoogle Scholar
  269. 269.
    Sano D, Myers JN. Metastasis of squamous cell carcinoma of the oral tongue. Cancer Metastasis Rev. 2007;26:645–62.CrossRefPubMedGoogle Scholar
  270. 270.
    Parhar S, Kaur H, Vashist A, Verma S. Role of podoplanin in potentially malignant disorders and oral squamous cell carcinoma and its correlation with lymphangiogenesis. Indian J Cancer. 2015;52:617–22.CrossRefPubMedGoogle Scholar
  271. 271.
    Assao A, Nonogaki S, Lauris JR, Carvalho AL, Pinto CA, Soares FA, et al. Podoplanin, ezrin, and Rho-A proteins may have joint participation in tumor invasion of lip cancer. Clin Oral Investig. 2017;21:1647–57.CrossRefPubMedGoogle Scholar
  272. 272.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRefGoogle Scholar
  273. 273.
    Artese L, Rubini C, Ferrero G, Fioroni M, Santinelli A, Piattelli A. Microvessel density (MVD) and vascular endothelial growth factor expression (VEGF) in human oral squamous cell carcinoma. Anticancer Res. 2001;21:689–95.PubMedGoogle Scholar
  274. 274.
    Koontongkaew S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer. 2013;4:66–83.CrossRefPubMedPubMedCentralGoogle Scholar
  275. 275.
    Zetter BR. Angiogenesis and tumor metastasis. Annu Rev Med. 1998;49:407–24.CrossRefPubMedPubMedCentralGoogle Scholar
  276. 276.
    Shang ZJ, Li JR. Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in oral squamous cell carcinoma: its correlation with angiogenesis and disease progression. J Oral Pathol Med. 2005;34:134–9.CrossRefPubMedPubMedCentralGoogle Scholar
  277. 277.
    DE Lima PO, Jorge CC, Oliveira DT, Pereira MC. Hypoxic condition and prognosis in oral squamous cell carcinoma. Anticancer Res. 2014;34:605–12.PubMedPubMedCentralGoogle Scholar
  278. 278.
    Fife CM, McCarroll JA, Kavallaris M. Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol. 2014;171:5507–23.CrossRefPubMedPubMedCentralGoogle Scholar
  279. 279.
    Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.CrossRefPubMedPubMedCentralGoogle Scholar
  280. 280.
    Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073–81.CrossRefPubMedPubMedCentralGoogle Scholar
  281. 281.
    Mantovani A, Garlanda C, Allavena P. Molecular pathways and targets in cancer-related inflammation. Ann Med. 2010;42:161–70.CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Bredell MG, Ernst J, El-Kochairi I, Dahlem Y, Ikenberg K, Schumann DM. Current relevance of hypoxia in head and neck cancer. Oncotarget. 2016;7:50781–804.CrossRefPubMedPubMedCentralGoogle Scholar
  283. 283.
    Allavena P, Garlanda C, Borrello MG, Sica A, Mantovani A. Pathways connecting inflammation and cancer. Curr Opin Genet Dev. 2008;18:3–10.CrossRefPubMedPubMedCentralGoogle Scholar
  284. 284.
    Porta C, Larghi P, Rimoldi M, Totaro MG, Allavena P, Mantovani A, et al. Cellular and molecular pathways linking inflammation and cancer. Immunobiology. 2009;214:761–77.CrossRefPubMedPubMedCentralGoogle Scholar
  285. 285.
    Sarode SC, Sarode GS. Neutrophil-tumor cell cannibalism in oral squamous cell carcinoma. J Oral Pathol Med. 2014;43:454–8.CrossRefGoogle Scholar
  286. 286.
    Sarode SC, Sarode GS, Chuodhari S, Patil S. Non-cannibalistic tumor cells of oral squamous cell carcinoma can express phagocytic markers. J Oral Pathol Med. 2017;46:327–31.CrossRefGoogle Scholar
  287. 287.
    Sarode GS, Sarode SC, Karmarkar S. Complex cannibalism: an unusual finding in oral squamous cell carcinoma. Oral Oncol. 2012;48:e4–6.CrossRefPubMedPubMedCentralGoogle Scholar
  288. 288.
    Jose D, Mane DR, Datar U, Muttagi S, Hallikerimath S, Kale AD. Evaluation of cannibalistic cells: a novel entity in prediction of aggressive nature of oral squamous cell carcinoma. Acta Odontol Scand. 2014;72:418–23.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Prashanth Panta
    • 1
  • Bramanandam Manavathi
    • 2
  • Siddavaram Nagini
    • 3
  1. 1.Department of Oral Medicine and RadiologyMNR Dental College and HospitalSangareddyIndia
  2. 2.Department of BiochemistrySchool of Life Sciences, University of HyderabadHyderabadIndia
  3. 3.Department of Biochemistry & BiotechnologyAnnamalai UniversityAnnāmalai NagarIndia

Personalised recommendations