Bioimpedance in Oral Cancer

  • Gargi S. Sarode
  • Sachin C. Sarode
  • Prashanth Panta


Bioimpedance is described as the response of living organisms to an external current. It is an amount of obstruction to the flow of the external current through the tissues. Bioimpedance is a noninvasive method for evaluating the structure of a living organism. A bioimpedance signal can be used for describing the tissues. Bioimpedance of a tissue differs with different applied frequencies. It is an established technique in detection of breast cancer, cervical cancer, prostate cancer, and other cancers. There are evidences that significant differences exist between bioimpedance of normal and malignant tissue. With this view in mind, a comprehensive description of the technique is hereby given to deliberate the role of bioimpedance with a special emphasis on oral cancer. We have also discussed the studies carried out on oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC) and realized the necessity for more studies especially on OPMDs and OSCC together.


Bioimpedance Early detection Electrical impedance Malignancies Noninvasive Oral cancer Oral potentially malignant disorders 


  1. 1.
    Heaviside O. The Electrician: AMS Bookstore; 23 July 1886., reprinted as Electrical Papers, p 64. p. 212. isbn:ISBN 0-8218-3465-7.
  2. 2.
    Kennelly AE. Impedance. Trans Am Inst Electr Eng. 1893;10:172–232.CrossRefGoogle Scholar
  3. 3.
    Weaver JC. Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem. 1993;51:426–35.CrossRefGoogle Scholar
  4. 4.
    Bayford RH. Bioimpedance tomography (electrical impedance tomography). Annu Rev Biomed Eng. 2006;8:63–91.CrossRefGoogle Scholar
  5. 5.
    Scholz B, Anderson R. On electrical impedance scanning—principles and simulations. Electromedica. 2000;68:35–44.Google Scholar
  6. 6.
    Davey CL, Markx GH, Kell DB. On the dielectric method of monitoring cellular viability. Pure Appl Chem. 1993;65:1921–6.CrossRefGoogle Scholar
  7. 7.
    Abdul S, Brown BH, Milnes P, Tidy JA. A clinical study of the use of impedance spectroscopy in the detection of cervical intraepithelial neoplasia (CIN). Gynecol Oncol. 2005;99:S64–6.CrossRefGoogle Scholar
  8. 8.
    Brown BH, Tidy JA, Boston K, Blackett AD, Smallwood RH, Sharp F. Relation between tissue structure and imposed electrical current flow in cervical neoplasia. Lancet. 2000;355:892–5.CrossRefGoogle Scholar
  9. 9.
    Bera TK, Nagaraju J. Electrical impedance spectroscopic study of broiler chicken tissues suitable for the development of practical phantoms in multifrequency EIT. J Electr Bioimpedance. 2011;2:48–63.Google Scholar
  10. 10.
    Bauchot AD, Harker FR, Arnold WM. The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biol Technol. 2000;18:9–18.CrossRefGoogle Scholar
  11. 11.
    Abdul S, Brown BH, Milnes P, Tidy JA. The use of electrical impedance spectroscopy in the detection of cervical intraepithelial neoplasia. Int J Gynecol Cancer. 2006;16:1823–32.CrossRefGoogle Scholar
  12. 12.
    Zou Y, Gou Z. A review of electrical impedance techniques for breast cancer detection. Med Eng Phys. 2003;25:79–90.CrossRefGoogle Scholar
  13. 13.
    Kay CF, Bothwell PT, Foltz EL. Electrical resistivity of living body tissues at low frequencies. J Physiol. 1954;13:131–6.Google Scholar
  14. 14.
    Nyboer J. Electrical impedance plethysmography. Hoboken/Springfield, IL: Blackwell/Charles C. Thomas; 1959. p. xvii+243. 60sGoogle Scholar
  15. 15.
    Baker LE. Principles of the impedance technique. IEEE Eng Med Biol Mag. 1989;3:11–5.CrossRefGoogle Scholar
  16. 16.
    Baumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance phase angle and body composition. Am J Clin Nutr. 1988;48:16–23.CrossRefGoogle Scholar
  17. 17.
    Pethig R. Dielectric properties of body tissues. Clin Phys Physiol Meas. 1987;8:A5–A12.CrossRefGoogle Scholar
  18. 18.
    Blad B, Baldetorp B. Impedance spectra of tumor tissue in comparison with normal tissue: a possible clinical application for electrical impedance tomography. Physiol Meas. 1996;17:A105–A15.CrossRefGoogle Scholar
  19. 19.
    Rabbat A. Tissue resistivity. In: Webster JG, editor. Electrical impedance tomography. Bristol and New York: IOP Publishing; 1990. p. 8–20.Google Scholar
  20. 20.
    Schwan HP. The practical success of impedance techniques from an historical perspective. Ann N Y Acad Sci. 1999;873:1–12.CrossRefGoogle Scholar
  21. 21.
    Grimnes S, Martinsen O. Bioimpedance and bioelectricity basics. 2nd ed: Academic Press. Department of physics. The Faculty of Mathematics and Natural Sciences Site ;
  22. 22.
    Institute of Medicine (US) Committee on Military Nutrition Research. Carlson-Newberry SJ, Costello RB, editors. Emerging technologies for nutrition research: potential for assessing military performance capability. Washington, DC: National Academies Press (US); 1997.Google Scholar
  23. 23.
    Chumlea WC, Guo SS. Bioelectrical impedance: a history, research issues, and recent consensus. In: Institute of Medicine (US) Committee on Military Nutrition Research, Carlson-Newberry SJ, Costello RB, editors. . Washington, DC: National Academies Press (US); 1997.Google Scholar
  24. 24.
    Castelló J, García-Gil R, Espí JM. A PC-based low cost impedance and gain-phase analyzer. Measurement. 2008;41:631–6.CrossRefGoogle Scholar
  25. 25.
    Yang Y, Wang J. A design of bioimpedance spectrometer for early detection of pressure ulcere. In: Engineering in Medicine and Biology Society, IEEE-EMBS 2005. 27th Annual International Conference of the IEEE; 2005. p. 6602–4.Google Scholar
  26. 26.
    Yang Y, Wang J, Yu G, Niu F, He P. Design and preliminary evaluation of a portable device for the measurement of bioimpedance spectroscopy. Physiol Meas. 2006;27:1293.CrossRefGoogle Scholar
  27. 27.
    Seoane F, Bragós R, Lindecrantz K. Current source for multifrequency broadband electrical bioimpedance spectroscopy systems. A novel approach. In: Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE; 2006. p. 5121–5.CrossRefGoogle Scholar
  28. 28.
    Zlochiver S, Arad M, Radai MM, Barak-Shinar D, Krief H, Engelman T, Abboud S. A portable bio-impedance system for monitoring lung resistivity. Med Eng Phys. 2007;29:93–100.CrossRefGoogle Scholar
  29. 29.
    Rangraz P, Sheikhani A, Hemmati N. Design and simulation of a current source for electrical impedance tomography. In: Proceedings of the 24th IASTED international conference on Biomedical engineering: ACTA Press. p. 396–400.Google Scholar
  30. 30.
    Dickin F, Wang M. Electrical resistance tomography for process applications. Meas Sci Technol. 1996;7:247.CrossRefGoogle Scholar
  31. 31.
    Sun T, Tsuda S, Zauner KP, Morgan H. On-chip electrical impedance tomography for imaging biological cells. Biosens Bioelectron. 2010;25:1109–15.CrossRefGoogle Scholar
  32. 32.
    Chai KT, Hammond PA, Cumming DRS. Modification of a CMOS microelectrode array for a bioimpedance imaging system. Sens Actuators B Chem. 2005;111:305–9.CrossRefGoogle Scholar
  33. 33.
    Ching CTS, Chen JH. A non-invasive, bioimpedance-based 2-dimensional imaging system for detection and localization of pathological epithelial tissues. Sens Actuators B Chem. 2015;206:319–26.CrossRefGoogle Scholar
  34. 34.
    Rodriguez S, Ollmar S, Waqar M, Rusu AA. Batteryless sensor ASIC for implantable bio-impedance applications. IEEE Trans Biomed. 2015;10:533–44.Google Scholar
  35. 35.
    Surowiec A, Stanislaw SS, Barr JR, Swarup A. Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Trans Biomed Eng. 1988;35:257–63.CrossRefGoogle Scholar
  36. 36.
    Morimoto T, Kinouchi Y, Iritani T, Kimura S, Konishi Y, Mitsuyama N, et al. Measurement of the electrical bioimpedance of breast tumors. Eur Surg Res. 1990;22:86–92.CrossRefGoogle Scholar
  37. 37.
    Morimoto T, Kimura S, Konishi Y, Komaki K, Uyama T, Monden Y, et al. A study of the electrical bio-impedance of tumors. J Investig Surg. 1993;6:25–32.CrossRefGoogle Scholar
  38. 38.
    Joines WT, Zhang Y, Li C, Jirtle RL. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med Phys. 1994;21:547–50.CrossRefGoogle Scholar
  39. 39.
    Jossinet J. Variability of impedivity in normal and pathological breast tissue. Med Biol Eng Comput. 1996;34:346–50.CrossRefGoogle Scholar
  40. 40.
    Jossinet J. The impedivity of freshly excised human breast tissue. Physiol Meas. 1998;19:61–75.CrossRefGoogle Scholar
  41. 41.
    Jossinet J, Schmitt M. A review of parameters for the bioelectrical characterization of breast tissue. Ann N Y Acad Sci. 1999;873:30–41.CrossRefGoogle Scholar
  42. 42.
    Emtestam L, Nicander I, Stenström M, Ollmar S. Electrical impedance of nodular basal cell carcinoma: a pilot study. Dermatology. 1998;197:313–6.CrossRefGoogle Scholar
  43. 43.
    Chauveau N, Hamzaoui L, Rochaix P, Rigaud B, Voigt JJ, Morucci JP. Ex vivo discrimination between normal and pathological tissues in human breast surgical biopsies using bioimpedance spectroscopy. Ann N Y Acad Sci. 1999;873:42–50.CrossRefGoogle Scholar
  44. 44.
    Lee BR, Roberts WW, Smith DG, Ko HW, Epstein JI, Lecksell K. Bioimpedance: novel use of a minimally invasive technique for cancer localization in the intact prostate. Prostate. 1999;39:213–8.CrossRefGoogle Scholar
  45. 45.
    Malich A, Boehm T, Facius M, Freesmeyer M, Azhari T, Werner B. Electrical impedance scanning of lymph nodes: initial clinical and technical findings. Clin Radiol. 2002;57:579–86.CrossRefGoogle Scholar
  46. 46.
    Glickman YA, Filo O, David M, Yayon A, Topaz M, Zamir B, et al. Electrical impedance scanning: a new approach to skin cancer diagnosis. Skin Res Technol. 2003;9:262–8.CrossRefGoogle Scholar
  47. 47.
    Beetner DG, Kapoor S, Manjunath S, Zhou X, Stoecker WV. Differentiation among basal cell carcinoma, benign lesions, and normal skin using electric impedance. IEEE Trans Biomed Eng. 2003;50:1020–5.CrossRefGoogle Scholar
  48. 48.
    Hope TA, Iles SE. Technology review: the use of electrical impedance scanning in the detection of breast cancer. Breast Cancer Res. 2004;6:69–74.CrossRefGoogle Scholar
  49. 49.
    Ohmine Y, Morimoto T, Kinouchi Y, Iritani T, Takeuchi M, Haku M, et al. Basic study of new diagnostic modality according to non-invasive measurement of the electrical conductivity of tissues. J Med Investig. 2004;51:218–25.CrossRefGoogle Scholar
  50. 50.
    Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S. Skin cancer identification using multifrequency electrical impedance-a potential screening tool. IEEE Trans Biomed Eng. 2004;51:2097–102.CrossRefGoogle Scholar
  51. 51.
    Aberg P, Geladi P, Nicander I, Hansson J, Holmgren U, Ollmar S. Non-invasive and microinvasive electrical impedance spectra of skin cancer—a comparison between two techniques. Skin Res Technol. 2005;11:281–6.CrossRefGoogle Scholar
  52. 52.
    Abdul S, Brown BH, Milnes P, Tidy JA. A clinical study of the use of impedance spectroscopy in the detection of cervical intraepithelial neoplasia (CIN). Gynecol Oncol. 2005;99:64–6.CrossRefGoogle Scholar
  53. 53.
    Gupta D, Lammersfeld CA, Vashi PG, King J, Dahlk LK, Grutsch JF, et al. Bioelectrical impedance phase angle as a prognostic indicator in breast cancer. BMC Cancer. 2008;8:249.CrossRefGoogle Scholar
  54. 54.
    Halter RJ, Schned A, Heaney J, Hartov A, Schutz S, Paulsen KD. Electrical impedance spectroscopy of benign and malignant prostatic tissues. J Urol. 2008;179:1580–6.CrossRefGoogle Scholar
  55. 55.
    Ching CT, Sun TP, Huang SH, Hsiao CS, Chang CH, Huang SY. A preliminary study of the use of bioimpedance in the screening of squamous tongue cancer. Int J Nanomedicine. 2010;7:213–20.CrossRefGoogle Scholar
  56. 56.
    Sun TP, Ching CT, Cheng CS, Huang SH, Chen YJ, Hsiao CS, et al. The use of bioimpedance in the detection/screening of tongue cancer. Cancer Epidemiol. 2010;34:207–11.CrossRefGoogle Scholar
  57. 57.
    Arias LR, Perry CA, Yang L. Real-time electrical impedance detection of cellular activities of oral cancer cells. Biosens Bioelectron. 2010;25:2225–31.CrossRefGoogle Scholar
  58. 58.
    Yang L, Arias LR, Lane TS, Yancey MD, Mamouni J. Real-time electrical impedance-based measurement to distinguish oral cancer cells and noncancer oral epithelial cells. Anal Bioanal Chem. 2011;399:1823–33.CrossRefGoogle Scholar
  59. 59.
    Sarode GS, Sarode GS, Kulkarni M, Karmarkar S, Patil S, Augustine D. Bioimpedance Assessment of oral squamous cell carcinoma with clinic-pathologic correlation. J Contemp Dent Pract. 2015;16:715–22.CrossRefGoogle Scholar
  60. 60.
    Wang Y, Borsic A, Heaney J, Seigne J, Schned A, Baker M, et al. Transrectal electrical impedance tomography of the prostate: spatially coregistered pathological findings for prostate cancer detection. Med Phys. 2013;40:063102.CrossRefGoogle Scholar
  61. 61.
    Sarode GS, Sarode SC. 370P Determination of bioimpedance in oral potentially malignant disorders. Ann Oncol. 2016;27(suppl_9). mdw587.012Google Scholar
  62. 62.
    Balasubramani L, Brown BH, Healey J, Tidy JA. The detection of cervical intraepithelial neoplasia by electrical impedance spectroscopy: the effects of acetic acid and tissue homogeneity. Gynecol Oncol. 2009;115:267–71.CrossRefGoogle Scholar
  63. 63.
    Sarode GS, Sarode SC, Kulkarni M, Karmarkar S, Patil S. Role of bioimpedance in cancer detection: a brief review. Int J Dent Sci Res. 2016;3:15–21.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Gargi S. Sarode
    • 1
  • Sachin C. Sarode
    • 1
  • Prashanth Panta
    • 2
  1. 1.Department of Oral Pathology and MicrobiologyDr. D. Y. Patil Dental College and HospitalPuneIndia
  2. 2.Department of Oral Medicine and RadiologyMNR Dental College and HospitalSangareddyIndia

Personalised recommendations