Advertisement

Optical Coherence Tomography: Emerging In Vivo Optical Biopsy Technique for Oral Cancers

  • Prashanth PantaEmail author
  • Chih-Wei Lu
  • Piyush Kumar
  • Tuan-Shu Ho
  • Sheng-Lung Huang
  • Pawan Kumar
  • C. Murali Krishna
  • K. Divakar Rao
  • Renu John
Chapter

Abstract

Oral cancers are a major health burden, and patients suffer from low survival rate owing to their late detection. Optical techniques are rapid, objective, and noninvasive methods with the potential to serve as adjunct screening/diagnostic tools, especially for cancers. This chapter highlights the advancements in oral cancer exploration using optical coherence tomography (OCT) with a discussion on basic principles of OCT, followed by a detailed description of oral cancer studies, subgrouped into animal studies, and ex vivo and in vivo human studies. We have included full-field OCT system-derived in vivo oral mucosa images in a healthy volunteer at different subsites showing standard microanatomy at various depths and also narrated some strategies to improve OCT results by multimodal approaches as well as through contrast enhancement for improved visualization.

Keywords

Optical coherence tomography Oral cancer Optical biopsy Noninvasive Imaging 

Notes

Acknowledgment

We thank Yunglin David Ma and Allen Lin from Apollo Medical Optics, Ltd. for their cooperation.

References

  1. 1.
    Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W, Hee M, Flotte T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science. 1991;254:1178–81.CrossRefGoogle Scholar
  2. 2.
    Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol. 2003;21:1361–7.CrossRefGoogle Scholar
  3. 3.
    Drexler W, Morgner U, Ghanta RK, Kärtner FX, Schuman JS, Fujimoto JG. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med. 2001;7:502–7.CrossRefGoogle Scholar
  4. 4.
    An L, Wang RK. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt Express. 2008;16:11438–52.CrossRefGoogle Scholar
  5. 5.
    Boppart SA, Luo W, Marks DL, Singletary KW. Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. Breast Cancer Res Treat. 2004;84:85–97.CrossRefGoogle Scholar
  6. 6.
    Vakoc BJ, Fukumura D, Jain RK, Bouma BE. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nat Rev Cancer. 2012;12:363–8.CrossRefGoogle Scholar
  7. 7.
    Wessels R, De Bruin D, Faber D, Van Leeuwen T, Van Beurden M, Ruers T. Optical biopsy of epithelial cancers by optical coherence tomography (OCT). Lasers Med Sci. 2014;29:1297–305.PubMedGoogle Scholar
  8. 8.
    Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI. Intracoronary optical coherence tomography: a comprehensive review: clinical and research applications. J Am Coll Cardiol Intv. 2009;2:1035–46.CrossRefGoogle Scholar
  9. 9.
    Larina IV, Ivers S, Syed S, Dickinson ME, Larin KV. Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT. Opt Lett. 2009;34:986–8.CrossRefGoogle Scholar
  10. 10.
    Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL. Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. J Am Acad Dermatol. 2006;55:408–12.CrossRefGoogle Scholar
  11. 11.
    Mogensen M, Joergensen TM, Nürnberg BM, Morsy HA, Thomsen JB, Thrane L et al. Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg. 2009;35:965-72.Google Scholar
  12. 12.
    Jørgensen TM, Tycho A, Mogensen M, Bjerring P, Jemec GB. Machine-learning classification of non-melanoma skin cancers from image features obtained by optical coherence tomography. Skin Res Technol. 2008;14:364–9.CrossRefGoogle Scholar
  13. 13.
    Wong BJ, Jackson RP, Guo S, Ridgway JM, Mahmood U, Su J, Shibuya TY, Crumley RL, Gu M, Armstrong WB. In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients. Laryngoscope. 2005;115:1904–11.CrossRefGoogle Scholar
  14. 14.
    Çilesiz I, Fockens P, Kerindongo R, Faber D, Tytgat G, ten Kate F, van Leeuwen T. Comparative optical coherence tomography imaging of human esophagus: how accurate is localization of the muscularis mucosae? Gastrointest Endosc. 2002;56:852–7.CrossRefGoogle Scholar
  15. 15.
    Cobb MJ, Hwang JH, Upton MP, Chen Y, Oelschlager BK, Wood DE, Kimmey MB, Li X. Imaging of subsquamous Barrett's epithelium with ultrahigh-resolution optical coherence tomography: a histologic correlation study. Gastrointest Endosc. 2010;71:223–30.CrossRefGoogle Scholar
  16. 16.
    Pitris C, Jesser C, Boppart SA, Stamper D, Brezinski ME, Fujimoto JG. Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies. J Gastroenterol. 2000;35:87–92.CrossRefGoogle Scholar
  17. 17.
    Poneros JM, Brand S, Bouma BE, Tearney GJ, Compton CC, Nishioka NS. Diagnosis of specialized intestinal metaplasia by optical coherence tomography. Gastroenterology. 2001;120:7–12.CrossRefGoogle Scholar
  18. 18.
    Escobar P, Belinson J, White A, Shakhova N, Feldchtein F, Kareta M, et al. Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of uterine cervix and vulva. Int J Gynecol Cancer. 2004;14:470–4.CrossRefGoogle Scholar
  19. 19.
    Tearney G, Brezinski M, Southern J, Bouma B, Boppart S, Fujimoto J. Optical biopsy in human urologic tissue using optical coherence tomography. J Urol. 1997;157:1915–9.CrossRefGoogle Scholar
  20. 20.
    Prestin S, Rothschild SI, Betz CS, Kraft M. Measurement of epithelial thickness within the oral cavity using optical coherence tomography. Head Neck. 2012;34:1777–81.CrossRefGoogle Scholar
  21. 21.
    Wilder-Smith P, Lee K, Guo S, Zhang J, Osann K, Chen Z, Messadi D. In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients. Lasers Surg Med. 2009;41:353–7.CrossRefGoogle Scholar
  22. 22.
    Tsai M-T, Lee C-K, Lee H-C, Chen H-M, Chiang C-P, Wang Y-M, Yang C-C. Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography. J Biomed Opt. 2009;14:044027–8.CrossRefGoogle Scholar
  23. 23.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRefGoogle Scholar
  24. 24.
    Kumar P, Krishna CM, Sahoo NK, Rao KD. Multimodal spectroscopic applications in cancer diagnosis: combined Raman spectroscopy and optical coherence tomography. Asian J Phys. 2015;7Google Scholar
  25. 25.
    Takada K, Yokohama I, Chida K, Noda J. New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl Opt. 1987;26:1603–6.CrossRefGoogle Scholar
  26. 26.
    Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2000;2:9–25.CrossRefGoogle Scholar
  27. 27.
    Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA. Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt. 2007;12:051403–21.CrossRefGoogle Scholar
  28. 28.
    Wang Y, Zhao Y, Nelson J, Chen Z, Windeler RS. Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. Opt Lett. 2003;28:182–4.CrossRefGoogle Scholar
  29. 29.
    De Boer JF, Milner TE. Review of polarization sensitive optical coherence tomography and stokes vector determination. J Biomed Opt. 2002;7:359–71.CrossRefGoogle Scholar
  30. 30.
    Matheny ES, Hanna NM, Jung WG, Chen Z, Wilder-Smith P, Mina-Araghi R, Brenner M. Optical coherence tomography of malignancy in hamster cheek pouches. J Biomed Opt. 2004;9:978–81.CrossRefGoogle Scholar
  31. 31.
    Hanna NM, Waite W, Taylor K, Jung WG, Mukai D, Matheny E, et al. Feasibility of three-dimensional optical coherence tomography and optical Doppler tomography of malignancy in hamster cheek pouches. Photomed Laser Surg. 2006;24:402–9.CrossRefGoogle Scholar
  32. 32.
    Graf RN, Robles FE, Chen X, Wax A. Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations. J Biomed Opt. 2009;14:064030–8.CrossRefGoogle Scholar
  33. 33.
    Pande P, Shrestha S, Park J, Serafino MJ, Gimenez-Conti I, Brandon J, Cheng Y-S, Applegate BE, Jo JA. Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch. J Biomed Opt. 2014;19:086022.CrossRefGoogle Scholar
  34. 34.
    Wilder-Smith P, Jung W-G, Brenner M, Osann K, Beydoun H, Messadi D, Chen Z. In vivo optical coherence tomography for the diagnosis of oral malignancy. Lasers Surg Med. 2004;35:269–75.CrossRefGoogle Scholar
  35. 35.
    Jung W, Zhang J, Chung J, Wilder-Smith P, Brenner M, Nelson JS, Chen Z. Advances in oral cancer detection using optical coherence tomography. IEEE J Sel Top Quantum Electron. 2005;11:811–7.CrossRefGoogle Scholar
  36. 36.
    Kumar P, Bhattacharjee T, Ingle A, Maru G, Krishna CM. Raman spectroscopy of experimental oral carcinogenesis: study on sequential cancer progression in hamster buccal pouch model. Technol Cancer Res Treat. 2016;15:NP60–72.CrossRefGoogle Scholar
  37. 37.
    Kumar P, Bhattacharjee T, Pandey M, Hole AR, Ingle A, Murali Krishna C. Raman spectroscopy in experimental oral carcinogenesis: investigation of abnormal changes in control tissues. J Raman Spectrosc. 2016;47:1318.CrossRefGoogle Scholar
  38. 38.
    Graf R, Brown W, Wax A. Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source. Opt Lett. 2008;33:1285–7.CrossRefGoogle Scholar
  39. 39.
    Tsai MT, Lee HC, Lu CW, Wang YM, Lee CK, Yang CC et al. Delineation of an oral cancer lesion with swept-source optical coherence tomography. J Biomed Opt. 2008;13:044012.Google Scholar
  40. 40.
    Jerjes W, Upile T, Conn B, Hamdoon Z, Betz CS, McKenzie G, Radhi H, et al. In vitro examination of suspicious oral lesions using optical coherence tomography. Br J Oral Maxillofac Surg. 2010;48:18–25.CrossRefGoogle Scholar
  41. 41.
    Hamdoon Z, Jerjes W, Al-Delayme R, McKenzie G, Jay A, Hopper C. Structural validation of oral mucosal tissue using optical coherence tomography. Head Neck Oncol. 2012;4:29.CrossRefGoogle Scholar
  42. 42.
    Adegun OK, Tomlins PH, Hagi-Pavli E, Mckenzie G, Piper K, Bader DL, et al. Quantitative analysis of optical coherence tomography and histopathology images of normal and dysplastic oral mucosal tissues. Lasers Med Sci. 2012;27:795–804.CrossRefGoogle Scholar
  43. 43.
    Hamdoon Z, Jerjes W, Upile T, McKenzie G, Jay A, Hopper C. Optical coherence tomography in the assessment of suspicious oral lesions: an immediate ex vivo study. Photodiagn Photodyn Ther. 2013;10:17–27.CrossRefGoogle Scholar
  44. 44.
    Hamdoon Z, Jerjes W, McKenzie G, Jay A, Hopper C. Optical coherence tomography in the assessment of oral squamous cell carcinoma resection margins. Photodiagn Photodyn Ther. 2016;13:211–7.CrossRefGoogle Scholar
  45. 45.
    Sharma P, Verma Y, Sahu K, Kumar S, Varma AV, Kumawat J, et al. Human ex-vivo oral tissue imaging using spectral domain polarization sensitive optical coherence tomography. Lasers Med Sci. 2017;32:143–50.CrossRefGoogle Scholar
  46. 46.
    Yoon Y, Jang WH, Xiao P, Kim B, Wang T, Li Q, et al. In vivo wide-field reflectance/fluorescence imaging and polarization-sensitive optical coherence tomography of human oral cavity with a forward-viewing probe. Biomed Opt Express. 2015;6:524–35.CrossRefGoogle Scholar
  47. 47.
    Lee AMD, Cahill L, Liu K, MacAulay C, Poh C, Lane P. Wide-field in vivo oral OCT imaging. Biomed Opt Express. 2015;6:2664–74.CrossRefGoogle Scholar
  48. 48.
    Feldchtein FI, Gelikonov GV, Gelikonov VM, Iksanov RR, Kuranov RV, Sergeev AM, Gladkova ND, Ourutina MN, Warren JA, Reitze DH. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express. 1998;3:239–50.CrossRefGoogle Scholar
  49. 49.
    C. Shu-Fan, L. Chih-Wei, T. Meng-Tsan, W. Yih-Ming, C.C. Yang, C. Chun-Ping, Oral Cancer Diagnosis with Optical Coherence Tomography, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2005, pp. 7227–7229.Google Scholar
  50. 50.
    Ridgway JM, Armstrong WB, Guo S, et al. In vivo optical coherence tomography of the human oral cavity and oropharynx. Arch Otolaryngol Head Neck Surg. 2006;132:1074–81.CrossRefGoogle Scholar
  51. 51.
    Tsai M-T, Lee H-C, Lee C-K, Yu C-H, Chen H-M, Chiang C-P, Chang C-C, Wang Y-M, Yang CC. Effective indicators for diagnosis of oral cancer using optical coherence tomography. Opt Express. 2008;16:15847–62.CrossRefGoogle Scholar
  52. 52.
    Ozawa N, Sumi Y, Shimozato K, Chong C, Kurabayashi T. In vivo imaging of human labial glands using advanced optical coherence tomography. Oral Surg Oral Med Oral Pathol Oral Radio Endod. 2009;108:425–9.CrossRefGoogle Scholar
  53. 53.
    Volgger V, Stepp H, Ihrler S, Kraft M, Leunig A, Patel PM, Susarla M, Jackson K, Betz CS. Evaluation of optical coherence tomography to discriminate lesions of the upper aerodigestive tract. Head Neck. 2013;35:1558–66.CrossRefGoogle Scholar
  54. 54.
    Lee CK, Chi TT, Wu CT, Tsai MT, Chiang CP, Yang CC. Diagnosis of oral precancer with optical coherence tomography. Biomed Opt Express. 2012;3:1632–46.Google Scholar
  55. 55.
    A.M. Lee, R. Goldan, H. Pahlevaninezhad, G. Hohert, K. Liu, C.E. MacAulay, et al, Towards biopsy guidance of oral lesions with wide-field OCT imaging, Biomedical Optics 2016, Optical Society of America, Fort Lauderdale, Florida, 2016, pp. JM4A4.Google Scholar
  56. 56.
    Choi WJ, Wang RK. In vivo imaging of functional microvasculature within tissue beds of oral and nasal cavities by swept-source optical coherence tomography with a forward/side-viewing probe. Biomed Opt Express. 2014;5:2620–34.CrossRefGoogle Scholar
  57. 57.
    Tsai MT, Chen Y, Lee CY, Huang BH, Trung NH, Lee YJ, et al. Noninvasive structural and microvascular anatomy of oral mucosae using handheld optical coherence tomography. Biomed Opt Express. 2017;8:5001–12.CrossRefGoogle Scholar
  58. 58.
    Wei W, Choi WJ, Wang RK. Microvascular imaging and monitoring of human oral cavity lesions in vivo by swept-source OCT-based angiography. Lasers Med Sci. 2018;33:123–34.Google Scholar
  59. 59.
    Maslennikova AV, Sirotkina MA, Moiseev AA, Finagina ES, Ksenofontov SY, Gelikonov GV, et al. In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography. Sci Rep. 2017;7:16505.CrossRefGoogle Scholar
  60. 60.
    Vinegoni C, Bredfeldt JS, Marks DL, Boppart SA. Nonlinear optical contrast enhancement for optical coherence tomography. Opt Express. 2004;12:331–41.CrossRefGoogle Scholar
  61. 61.
    Lee TM, Oldenburg AL, Sitafalwalla S, Marks DL, Luo W, Toublan FJ-J, et al. Engineered microsphere contrast agents for optical coherence tomography. Opt Lett. 2003;28:1546–8.CrossRefGoogle Scholar
  62. 62.
    Vinegoni C, Ralston T, Tan W, Luo W, Marks DL, Boppart SA, et al. Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy. Appl Phys Lett. 2006;88:053901.CrossRefGoogle Scholar
  63. 63.
    Barton JK, Guzman F, Tumlinson A. Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy. J Biomed Opt. 2004;9:618–23.CrossRefGoogle Scholar
  64. 64.
    Jo JA, Applegate BE, Park J, Shrestha S, Pande P, Gimenez-Conti IB, Brandon JL. In Vivo simultaneous morphological and biochemical optical imaging of oral epithelial Cancer. IEEE Trans Biomed Eng. 2010;57:2596–9.CrossRefGoogle Scholar
  65. 65.
    König K, Speicher M, Bückle R, Reckfort J, McKenzie G, Welzel J, et al. Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases. J Biophotonics. 2009;2:389–97.CrossRefGoogle Scholar
  66. 66.
    Ko AC, Choo-Smith LP, Hewko M, Leonardi L, Sowa MG, Dong CC et al. Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy. J Biomed Opt. 2005;10:031118.Google Scholar
  67. 67.
    Patil CA, Bosschaart N, Keller MD, van Leeuwen TG, Mahadevan-Jansen A. Combined Raman spectroscopy and optical coherence tomography device for tissue characterization. Opt Lett. 2008;33:1135–7.CrossRefGoogle Scholar
  68. 68.
    Bickel WS, Davidson J, Huffman D, Kilkson R. Application of polarization effects in light scattering: a new biophysical tool. Proc Natl Acad Sci USA. 1976;73:486–90.CrossRefGoogle Scholar
  69. 69.
    Ahn Y-C, Chung J, Wilder-Smith P, Chen Z. Multimodality approach to optical early detection and mapping of oral neoplasia. J Biomed Opt. 2011;16:076007.CrossRefGoogle Scholar
  70. 70.
    Park J, Jo JA, Shrestha S, Pande P, Wan Q, Applegate BE. A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization. Biomed Opt Express. 2010;1:186–200.CrossRefGoogle Scholar
  71. 71.
    Pande P, Shrestha S, Park J, Gimenez-Conti I, Brandon J, Applegate BE, et al. Automated analysis of multimodal fluorescence lifetime imaging and optical coherence tomography data for the diagnosis of oral cancer in the hamster cheek pouch model. Biomed Opt Express. 2016;7:2000–15.CrossRefGoogle Scholar
  72. 72.
    C.A. Patil, H. Krishnamoorthi, D.L. Ellis, T.G. van Leeuwen, A. Mahadevan-Jansen. A clinical probe for combined Raman spectroscopy-optical coherence tomography (RS-OCT) of the skin cancers, 2010, pp. 75480L.Google Scholar
  73. 73.
    García-Hernández A, Roldán-Marín R, Iglesias-Garcia P, Malvehy J. In Vivo noninvasive imaging of healthy lower lip mucosa: a correlation study between high-definition optical coherence tomography, reflectance confocal microscopy, and histology. Dermatol Res Pract. 2013;2013:205256.CrossRefGoogle Scholar
  74. 74.
    Boppart SA, Oldenburg AL, Xu C, Marks DL. Optical probes and techniques for molecular contrast enhancement in coherence imaging. J Biomed Opt. 2005;10:041208–14.CrossRefGoogle Scholar
  75. 75.
    Barton JK, Hoying JB, Sullivan CJ. Use of microbubbles as an optical coherence tomography contrast agent. Acad Radiol. 2002;9:S52–5.CrossRefGoogle Scholar
  76. 76.
    Morgner U, Drexler W, Kärtner F, Li X, Pitris C, Ippen E, et al. Spectroscopic optical coherence tomography. Opt Lett. 2000;25:111–3.CrossRefGoogle Scholar
  77. 77.
    Rao KD, Choma MA, Yazdanfar S, Rollins AM, Izatt JA. Molecular contrast in optical coherence tomography by use of a pump–probe technique. Opt Lett. 2003;28:340–2.CrossRefGoogle Scholar
  78. 78.
    Cang H, Sun T, Li Z-Y, Chen J, Wiley BJ, Xia Y, et al. Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Opt Lett. 2005;30:3048–50.CrossRefGoogle Scholar
  79. 79.
    Oldenburg AL, Hansen MN, Zweifel DA, Wei A, Boppart SA. Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Opt Express. 2006;14:6724–38.Google Scholar
  80. 80.
    Agrawal A, Huang S, Wei Haw Lin A, Lee M-H, Barton JK, Drezek RA, Pfefer TJ. Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells. J Biomed Opt. 2006;11:041121–8.CrossRefGoogle Scholar
  81. 81.
    Wilson R. The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev. 2008;37:2028–45.CrossRefGoogle Scholar
  82. 82.
    Kim CS, Wilder-Smith P, Ahn Y-C, Liaw L-HL, Chen Z, Kwon YJ. Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles. J Biomed Opt. 2009;14:034008.CrossRefGoogle Scholar
  83. 83.
    Liba O, SoRelle ED, Sen D, de la Zerda A. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging. Sci Rep. 2016;6:23337.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Prashanth Panta
    • 1
    Email author
  • Chih-Wei Lu
    • 2
  • Piyush Kumar
    • 3
  • Tuan-Shu Ho
    • 2
    • 4
  • Sheng-Lung Huang
    • 2
    • 4
  • Pawan Kumar
    • 5
  • C. Murali Krishna
    • 6
    • 7
  • K. Divakar Rao
    • 8
  • Renu John
    • 5
  1. 1.Department of Oral Medicine and RadiologyMNR Dental College and HospitalSangareddyIndia
  2. 2.Apollo Medical Optics, Ltd. (AMO)TaipeiTaiwan
  3. 3.Amity Institute of Biotechnology, Amity University MumbaiNavi MumbaiIndia
  4. 4.Graduate Institute of Photonics and Optoelectronics, National Taiwan UniversityTaipeiTaiwan
  5. 5.Department of Biomedical EngineeringIndian Institute of TechnologyHyderabadIndia
  6. 6.Chilakapati LaboratoryAdvanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC)MumbaiIndia
  7. 7.Homi Bhabha National InstituteAnushakti Nagar, MumbaiIndia
  8. 8.Photonics and Nanotechnology SectionBhabha Atomic Research Centre FacilityVisakhapatnamIndia

Personalised recommendations