Verifying Controllability of Time-Aware Business Processes

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10364)

Abstract

We present an operational semantics for time-aware business processes, that is, processes modeling the execution of business activities, whose durations are subject to linear constraints over the integers. We assume that some of the durations are controllable, that is, they can be determined by the organization that enacts the process, while others are uncontrollable, that is, they are determined by the external world.

Then, we consider controllability properties, which guarantee the completion of the enactment of the process, satisfying the given duration constraints, independently of the values of the uncontrollable durations. Controllability properties are encoded by quantified reachability formulas, where the reachability predicate is recursively defined by a set of Constrained Horn Clauses (CHCs). These clauses are automatically derived from the operational semantics of the process.

Finally, we present two algorithms for solving the so called weak and strong controllability problems. Our algorithms reduce these problems to the verification of a set of quantified integer constraints, which are simpler than the original quantified reachability formulas, and can effectively be handled by state-of-the-art CHC solvers.

References

  1. 1.
    van der Aalst, W.M.P.: The application of Petri nets to workflow management. J. Circ. Syst. Comput. 8(1), 21–66 (1998)Google Scholar
  2. 2.
    Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of relational data-centric dynamic systems with external services. In: Proceedings of the (PODS 2013), pp. 163–174. ACM (2013)Google Scholar
  3. 3.
    Berthomieu, B., Vernadat, F.: Time Petri nets analysis with TINA. In: Proceedings of QEST 2006, pp. 123–124. IEEE Computer Society (2006)Google Scholar
  4. 4.
    Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner, B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp. 24–51. Springer, Cham (2015). doi:10.1007/978-3-319-23534-9_2 CrossRefGoogle Scholar
  5. 5.
    Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: The temporal perspective in business process modeling: a survey and research challenges. Serv. Oriented Comput. Appl. 9(1), 75–85 (2015)Google Scholar
  6. 6.
    Cimatti, A., Hunsberger, L., Micheli, A., Posenato, R., Roveri, M.: Dynamic controllability via timed game automata. Acta Informatica 53(6), 681–722 (2016)Google Scholar
  7. 7.
    Cimatti, A., Micheli, A., Roveri, M.: Solving strong controllability of temporal problems with uncertainty using SMT. Constraints 20(1), 1–29 (2015)Google Scholar
  8. 8.
    Cimatti, A., Micheli, A., Roveri, M.: An SMT-based approach to weak controllability for disjunctive temporal problems with uncertainty. Artif. Intell. 224, 1–27 (2015)Google Scholar
  9. 9.
    Combi, C., Posenato, R.: Controllability in temporal conceptual workflow schemata. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 64–79. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03848-8_6 CrossRefGoogle Scholar
  10. 10.
    Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems with data dependencies and arithmetic. ACM Trans. Database Syst. 37(3), 1–36 (2012)Google Scholar
  11. 11.
    De Angelis, E., Fioravanti, F., Meo, M.C., Pettorossi, A., Proietti, M.: Verification of time-aware business processes using Constrained Horn Clauses. In: Preliminary Proceedings of LOPSTR 2016, CoRR. http://arxiv.org/abs/1608.02807 (2016)
  12. 12.
    De Angelis, E., Fioravanti, F., Meo, M.C., Pettorossi, A., Proietti, M.: Verifying controllability of time-aware business processes. Technical report IASI-CNR 16-08 (2016)Google Scholar
  13. 13.
    Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: VeriMAP: a tool for verifying programs through transformations. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 568–74. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8_47 CrossRefGoogle Scholar
  14. 14.
    De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Semantics-based generation of verification conditions by program specialization. In: Proceedings of the PPDP 2015, pp. 91–102. ACM (2015)Google Scholar
  15. 15.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3_24 CrossRefGoogle Scholar
  16. 16.
    Etalle, S., Gabbrielli, M.: Transformations of CLP modules. Theor. Comput. Sci. 166, 101–146 (1996)Google Scholar
  17. 17.
    Formal Systems (Europe) Ltd. Failures-Divergences Refinement, FDR2 User Manual (1998). http://www.fsel.com
  18. 18.
    ter Hofstede, A.M., van der Aalst, W.M.P., Adams, M., Russell, N. (eds.): Modern Business Process Automation: YAWL and its Support Environment. Springer, Heidelberg (2010)Google Scholar
  19. 19.
    Jaffar, J., Maher, M.: Constraint logic programming: a survey. J. Logic Program. 19(20), 503–81 (1994)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Gener. Comput. 4(1), 67–95 (1986)CrossRefMATHGoogle Scholar
  21. 21.
    Kumar, A., Sabbella, S.R., Barton, R.R.: Managing controlled violation of temporal process constraints. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 280–96. Springer, Cham (2015). doi:10.1007/978-3-319-23063-4_20 CrossRefGoogle Scholar
  22. 22.
    Lanz, A., Posenato, R., Combi, C., Reichert, M.: Controlling time-awareness in modularized processes. In: Schmidt, R., Guédria, W., Bider, I., Guerreiro, S. (eds.) BPMDS/EMMSAD -2016. LNBIP, vol. 248, pp. 157–72. Springer, Cham (2016). doi:10.1007/978-3-319-39429-9_11 Google Scholar
  23. 23.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. Int. J. Softw. Tools Technol. Transf. 1(1–2), 134–152 (1997)Google Scholar
  24. 24.
    Makni, M., Tata, S., Yeddes, M., Ben Hadj-Alouane, N.: Satisfaction and coherence of deadline constraints in inter-organizational workflows. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 523–39. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16934-2_39 CrossRefGoogle Scholar
  25. 25.
    McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp. 463–502. Edinburgh University Press (1969)Google Scholar
  26. 26.
    OMG. Business Process Model and Notation. http://www.omg.org/spec/BPMN/
  27. 27.
    Peintner, B., Venable, K.B., Yorke-Smith, N.: Strong controllability of disjunctive temporal problems with uncertainty. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 856–63. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7_64 CrossRefGoogle Scholar
  28. 28.
    Proietti, M., Smith, F.: Reasoning on data-aware business processes with constraint logic. In: Proceedings of the SIMPDA 2014. CEUR, vol. 1293, pp. 60–75 (2014)Google Scholar
  29. 29.
    Smith, F., Proietti, M.: Rule-based behavioral reasoning on semantic business processes. In: Proceedings of the ICAART 2013, vol. II, pp. 130–143. SciTePress (2013)Google Scholar
  30. 30.
    Thielscher, M.: From Situation Calculus to Fluent Calculus: State update axioms as a solution to the inferential frame problem. Artif. Intell. 111(1-2), 277–299 (1999)Google Scholar
  31. 31.
    Venable, K.B., Volpato, M., Peintner, B., Yorke-Smith, N.: Weak and dynamic controllability of temporal problems with disjunctions and uncertainty. In: Proceedings of the COPLAS 2010, pp. 50–59 (2010)Google Scholar
  32. 32.
    Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from consistency to controllabilities. J. Exp. Theor. Artif. Intell. 11(1), 23-45 (1999)Google Scholar
  33. 33.
    Watahiki, K., Ishikawa, F., Hiraishi, K.: Formal verification of business processes with temporal and resource constraints. In: Proceedings of the SMC 2011, pp. 1173–1180. IEEE (2011)Google Scholar
  34. 34.
    Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification of semantic business process models. Distrib. Parallel Databases 27, 271–343 (2010)Google Scholar
  35. 35.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer, Heidelberg (2007)Google Scholar
  36. 36.
    Wong, P.Y.H., Gibbons, J.: A relative timed semantics for BPMN. Electron. Notes Theor. Comput. Sci. 229(2), 59–75 (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Emanuele De Angelis
    • 1
  • Fabio Fioravanti
    • 1
  • Maria Chiara Meo
    • 1
  • Alberto Pettorossi
    • 2
  • Maurizio Proietti
    • 3
  1. 1.DECUniversity ‘G. D’Annunzio’PescaraItaly
  2. 2.DICIIUniversity of Rome Tor VergataRomeItaly
  3. 3.IASI-CNRRomeItaly

Personalised recommendations