Dischargeable Obligations in Abductive Logic Programming

  • Marco AlbertiEmail author
  • Marco Gavanelli
  • Evelina Lamma
  • Fabrizio Riguzzi
  • Riccardo Zese
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10364)


Abductive Logic Programming (ALP) has been proven very effective for formalizing societies of agents, commitments and norms, in particular by mapping the most common deontic operators (obligation, prohibition, permission) to abductive expectations.

In our previous works, we have shown that ALP is a suitable framework for representing norms. Normative reasoning and query answering were accommodated by the same abductive proof procedure, named \({\mathcal {S}}\text {CIFF}\).

In this work, we introduce a defeasible flavour in this framework, in order to possibly discharge obligations in some scenarios. Abductive expectations can also be qualified as dischargeable, in the new, extended syntax. Both declarative and operational semantics are improved accordingly, and proof of soundness is given under syntax allowedness conditions.

The expressiveness and power of the extended framework, named \({{\mathcal {S}}\text {CIFF}}^{\mathcal {D}}\), is shown by modeling and reasoning upon a fragment of the Japanese Civil Code. In particular, we consider a case study concerning manifestations of intention and their rescission (Sect. 2 of the Japanese Civil Code).



This work was partially supported by the “GNCS-INdAM”.


  1. 1.
    Ågotnes, T., van der Hoek, W., Rodríguez-Aguilar, J.A., Sierra, C., Wooldridge, M.: On the logic of normative systems. In: Veloso, M.M. (ed.) 20th International Joint Conference on Artificial Intelligence, Hyderabad, India (IJCAI 2007), vol. 7, pp. 1175–1180. AAAI Press, Palo Alto (2007)Google Scholar
  2. 2.
    Ågotnes, T., van der Hoek, W., Wooldridge, M.: Robust normative systems and a logic of norm compliance. Log. J. IGPL 18(1), 4–30 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M.: An abductive framework for a-priori verification of web services. In: Maher, M. (ed.) Proceedings of the 8th Symposium on Principles and Practice of Declarative Programming, pp. 39–50. ACM Press, New York, July 2006Google Scholar
  4. 4.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Compliance verification of agent interaction: a logic-based software tool. Appl. Artif. Intell. 20(2–4), 133–157 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: the SCIFF framework. ACM T. Comput. Log. 9(4), 29:1–29:43 (2008)zbMATHGoogle Scholar
  6. 6.
    Alberti, M., Gavanelli, M., Lamma, E.: Deon \(^+\): abduction and constraints for normative reasoning. In: Artikis, A., Craven, R., Kesim Çiçekli, N., Sadighi, B., Stathis, K. (eds.) Logic Programs, Norms and Action. LNCS, vol. 7360, pp. 308–328. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29414-3_17 CrossRefGoogle Scholar
  7. 7.
    Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Sartor, G., Torroni, P.: Mapping deontic operators to abductive expectations. Comput. Math. Organ. Th. 12(2–3), 205–225 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and verification of agent interactions using social integrity constraints. Electr. Notes Theor. Comput. Sci. 85(2), 94–116 (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Alchourrón, C.E.: Detachment and defeasibility in deontic logic. Studia Logica 57(1), 5–18 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symbolic Logic 50(2), 510–530 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    ALFEBIITE: A Logical Framework for Ethical Behaviour Between Infohabitants in the Information Trading Economy of the Universal Information Ecosystem. IST-1999-10298 (1999)Google Scholar
  12. 12.
    Arisha, K.A., Ozcan, F., Ross, R., Subrahmanian, V.S., Eiter, T., Kraus, S.: IMPACT: a platform for collaborating agents. IEEE Intell. Syst. 14(2), 64–72 (1999)CrossRefGoogle Scholar
  13. 13.
    Bex, F., Prakken, H., Reed, C., Walton, D.: Towards a formal account of reasoning about evidence: argumentation schemes and generalisations. Artif. Intell. Law 11(2–3), 125–165 (2003)CrossRefGoogle Scholar
  14. 14.
    Bex, F.J., van Koppen, P.J., Prakken, H., Verheij, B.: A hybrid formal theory of arguments, stories and criminal evidence. Artif. Intell. Law 18(2), 123–152 (2010)CrossRefGoogle Scholar
  15. 15.
    Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent systems. Comput. Math. Organ. Th. 12, 71–79 (2006)CrossRefGoogle Scholar
  16. 16.
    Boella, G., van der Torre, L.W.N.: Permissions and obligations in hierarchical normative systems. In: Zeleznikow, J., Sartor, G. (eds.) 9th International Conference on Artificial Intelligence and Law (ICAIL 2003), Edinburgh, Scotland, UK, Proceedings, pp. 109–118. ACM Press (2003)Google Scholar
  17. 17.
    Bracciali, A., et al.: The KGP model of agency for global computing: computational model and prototype implementation. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp. 340–367. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-31794-4_18 CrossRefGoogle Scholar
  18. 18.
    Dignum, V., Meyer, J.J., Weigand, H.: Towards an organizational model for agent societies using contracts. In: Castelfranchi, C., Lewis Johnson, W. (eds.) 1st International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2002), Part II, pp. 694–695. ACM Press (2002)Google Scholar
  19. 19.
    Dignum, V., Meyer, J.J., Weigand, H., Dignum, F.: An organizational-oriented model for agent societies. In: 1st International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2002). ACM Press (2002)Google Scholar
  20. 20.
    Eiter, T., Subrahmanian, V., Pick, G.: Heterogeneous active agents, I: semantics. Artif. Intell. 108(1–2), 179–255 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM 42(1), 3–42 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pp. 995–1072. Elsevier (1990)Google Scholar
  23. 23.
    Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic programming. J. Logic Program. 33(2), 151–165 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gavanelli, M., Lamma, E., Riguzzi, F., Bellodi, E., Zese, R., Cota, G.: An abductive framework for Datalog\(+-\) ontologies. In: De Vos, M., Eiter, T., Lierler, Y., Toni, F. (eds.) Technical Communications of the 31st International Conference on Logic Programming (ICLP 2015), No. 1433 in CEUR-WS, Sun SITE Central Europe, Aachen, Germany (2015)Google Scholar
  25. 25.
    Governatori, G.: Representing business contracts in RuleML. Int. J. Coop. Inf. Syst. 14(2–3), 181–216 (2005)CrossRefGoogle Scholar
  26. 26.
    Governatori, G., Milosevic, Z., Sadiq, S.W.: Compliance checking between business processes and business contracts. In: 10th IEEE International Enterprise Distributed Object Computing Conference (EDOC), Hong Kong, China, pp. 221–232. IEEE Computer Society (2006)Google Scholar
  27. 27.
    Governatori, G., Rotolo, A.: BIO logical agents: norms, beliefs, intentions in defeasible logic. Auton. Agent Multi Ag. 17(1), 36–69 (2008)CrossRefGoogle Scholar
  28. 28.
    Jaffar, J., Maher, M.: Constraint logic programming: a survey. J. Logic Program. 19–20, 503–582 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Japanese Civil Code, Part I. Accessed 19 July 2016
  30. 30.
    Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Logic Comput. 2(6), 719–770 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kazmierczak, P., Pedersen, T., Ågotnes, T.: NORMC: a norm compliance temporal logic model checker. In: Kersting, K., Toussaint, M. (eds.) 6th Starting AI Researchers’ Symposium (STAIR 2012), FRONTIERS, Montpellier, France, vol. 241, pp. 168–179. IOS Press (2012)Google Scholar
  32. 32.
    Makinson, D., van der Torre, L.W.N.: Constraints for input/output logics. J. Philos. Logic 30(2), 155–185 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible priorities. J. Appl. Non Classical Logics 7(1), 25–75 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Sadri, F., Stathis, K., Toni, F.: Normative KGP agents. Comput. Math. Organ. Th. 12(2–3), 101–126 (2006)CrossRefzbMATHGoogle Scholar
  35. 35.
    Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.: The British Nationality Act as a logic program. Commun. ACM 29, 370–386 (1986)CrossRefGoogle Scholar
  36. 36.
    Wright, G.: Deontic logic. Mind 60, 1–15 (1951)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marco Alberti
    • 1
    Email author
  • Marco Gavanelli
    • 2
  • Evelina Lamma
    • 2
  • Fabrizio Riguzzi
    • 1
  • Riccardo Zese
    • 2
  1. 1.Dipartimento di Matematica e InformaticaUniversity of FerraraFerraraItaly
  2. 2.Dipartimento di IngegneriaUniversity of FerraraFerraraItaly

Personalised recommendations