Advertisement

Inconsistency-Tolerant Instance Checking in Tractable Description Logics

  • Rafael PeñalozaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10364)

Abstract

Research on inconsistency-tolerant query answering usually assumes that the terminological knowledge is correct, and only the facts (ABox) need to be repaired. In this paper we study the problem of answering instance queries over inconsistent ontologies, by repairing the whole knowledge base (KB). Contrary to ABox repairs, when KB repairs are considered, instance checking in \(\textit{DL}\text {-}{} \textit{Lite}_\textit{Horn}\) w.r.t. the brave semantics remains tractable, and the intersection semantics allow for an any-time algorithm. We also show that inconsistency-tolerant instance checking w.r.t. ABox repairs is intractable even if only polynomially many ABox repairs exist.

References

  1. 1.
    Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases. In: Vianu, V., Papadimitriou, C.H. (eds.) Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 1999), pp. 68–79. ACM Press (1999). http://doi.acm.org/10.1145/303976.303983
  2. 2.
    Arif, M.F., Mencía, C., Ignatiev, A., Manthey, N., Peñaloza, R., Marques-Silva, J.: BEACON: an efficient SAT-based tool for debugging \({\cal{EL}}{^+}\) ontologies. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 521–530. Springer, Cham (2016). doi: 10.1007/978-3-319-40970-2_32 Google Scholar
  3. 3.
    Arif, M.F., Mencía, C., Marques-Silva, J.: Efficient axiom pinpointing with EL2MCS. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS, vol. 9324, pp. 225–233. Springer, Cham (2015). doi: 10.1007/978-3-319-24489-1_17 CrossRefGoogle Scholar
  4. 4.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. Artif. Intell. Res. 36, 1–69 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic \(\cal{EL}^+\). In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNAI, vol. 4667, pp. 52–67. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Bienvenu, M.: On the complexity of consistent query answering in the presence of simple ontologies. In: Hoffmann, J., Selman, B. (eds.) Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI-12). AAAI Press (2012). http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4928
  7. 7.
    Bienvenu, M., Bourgaux, C., Goasdoué, F.: Querying inconsistent description logic knowledge bases under preferred repair semantics. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI-14), pp. 996–1002. AAAI Press (2014). http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8231
  8. 8.
    Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering for robust ontology-based data access. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI-13), pp. 775–781. AAAI Press (2013). http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6904
  9. 9.
    Downey, R.G., Fellows, M.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. Technical report. CD-TR 91/16, Christian Doppler Laboratory for Expert Systems, TU Vienna (1991)Google Scholar
  11. 11.
    Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Eiter, T., Lukasiewicz, T., Predoiu, L.: Generalized consistent query answering under existential rules. In: Baral, C., Delgrande, J.P., Wolter, F. (eds.) Proceedings of the 15th International Conference on Principles of Knowledge Representation and Reasoning (KR 2016), pp. 359–368. AAAI Press (2016)Google Scholar
  13. 13.
    Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gottlob, G., Malizia, E.: Achieving new upper bounds for the hypergraph duality problem through logic. The Computing Research Repository (CoRR) abs/1407.2912 (2014). http://arxiv.org/abs/1407.2912
  15. 15.
    Hagen, M.: Algorithmic and Computational Complexity Issues of MONET. Ph.D. dissertation, Institut für Informatik, Friedrich-Schiller-Universität Jena (2008)Google Scholar
  16. 16.
    Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in OWL ontologies. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 124–137. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04388-8_11 CrossRefGoogle Scholar
  17. 17.
    Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inform. Process. Lett. 27(3), 119–123 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B.: Repairing unsatisfiable concepts in OWL ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 170–184. Springer, Heidelberg (2006). doi: 10.1007/11762256_15 CrossRefGoogle Scholar
  19. 19.
    Kavvadias, D.J., Sideri, M., Stavropoulos, E.C.: Generating all maximal models of a boolean expression. Inform. Process. Lett. 74(3–4), 157–162 (2000). http://dx.doi.org/10.1016/S0020-0190(00)00023-5
  20. 20.
    Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15918-3_9 CrossRefGoogle Scholar
  21. 21.
    Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant query answering in ontology-based data access. J. Web Semant. 33, 3–29 (2015). http://dx.doi.org/10.1016/j.websem.2015.04.002
  22. 22.
    Ludwig, M., Peñaloza, R.: Error-tolerant reasoning in the description logic \(\cal{E{}L}\). In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 107–121. Springer, Cham (2014). doi: 10.1007/978-3-319-11558-0_8 Google Scholar
  23. 23.
    Lukasiewicz, T., Martinez, M.V., Pieris, A., Simari, G.I.: From classical to consistent query answering under existential rules. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15), pp. 1546–1552. AAAI Press (2015). http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9817
  24. 24.
    Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in datalog+/- ontologies. In: Raedt, L.D., Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.) Proceedings of the 20th European Conference on Artificial Intelligence (ECAI-2012). Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 558–563. IOS Press (2012). http://dx.doi.org/10.3233/978-1-61499-098-7-558
  25. 25.
    Marino, A.: Analysis and Enumeration: Algorithms for Biological Graphs. Springer, New York (2015)Google Scholar
  26. 26.
    Marques-Silva, J., Ignatiev, A., Mencía, C., Peñaloza, R.: Efficient reasoning for inconsistent horn formulae. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS, vol. 10021, pp. 336–352. Springer, Cham (2016). doi: 10.1007/978-3-319-48758-8_22 CrossRefGoogle Scholar
  27. 27.
    Nielsen, L.R., Andersen, K.A., Pretolani, D.: Finding the K shortest hyperpaths. Comput. Oper. Res. 32(6), 1477–1497 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A., Hagino, T. (eds.) Proceedings of the 14th International Conference on World Wide Web (WWW 2005), pp. 633–640. ACM (2005)Google Scholar
  29. 29.
    Peñaloza, R., Sertkaya, B.: Complexity of axiom pinpointing in the dl-lite family of description logics. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) Proceedings of the 19th European Conference on Artificial Intelligence (ECAI-2010). Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 29–34. IOS Press (2010)Google Scholar
  30. 30.
    Peñaloza, R., Sertkaya, B.: Understanding the complexity of axiom pinpointing in lightweight description logics. Artificial Intelligence (2017, to appear)Google Scholar
  31. 31.
    Peñaloza, R.: Axiom pinpointing in description logics and beyond. Ph.D. thesis, Technische Universität Dresden (2009). http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24743
  32. 32.
    Rosati, R.: On the complexity of dealing with inconsistency in description logic ontologies, pp. 1057–1062. AAAI Press (2011). http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-181
  33. 33.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-03), pp. 355–362. Morgan Kaufmann (2003)Google Scholar
  34. 34.
    Schlobach, S., Huang, Z., Cornet, R., Harmelen, F.: Debugging incoherent terminologies. J. Autom. Reasoning 39(3), 317–349 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Tsalapati, E., Stoilos, G., Stamou, G.B., Koletsos, G.: Efficient query answering over expressive inconsistent description logics, pp. 1279–1285. AAAI Press (2016). http://www.ijcai.org/Abstract/16/185

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.KRDB Research CentreFree University of Bozen-BolzanoBolzanoItaly

Personalised recommendations