Efficiently Obfuscating Re-Encryption Program Under DDH Assumption

  • Akshayaram Srinivasan
  • Chandrasekaran Pandu Rangan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10355)

Abstract

The re-encryption functionality transforms a ciphertext encrypted under a public key \(pk_1\) to a ciphertext of the same message encrypted under a different public key \(pk_2\). Hohenberger et al. (TCC 2007) proposed a pairing-based obfuscator for the family of circuits implementing the re-encryption functionality under a new notion of obfuscation called as average-case secure obfuscation. Chandran et al. (PKC 2014) proposed a lattice-based construction for the same.

The construction given by Hohenberger et al. could only support polynomial sized message space and the proof of security relies on strong assumptions on bilinear groups. Chandran et al.’s construction could only satisfy a relaxed notion of correctness.

In this work, we propose a simple and efficient obfuscator for the re-encryption functionality that satisfies the strongest notion of correctness, supports encryption of messages from an exponential sized domain and relies on the standard DDH-assumption. This is the first construction that does not rely on pairings or lattices. All our proofs are in the standard model.

Keywords

Re-encryption functionality Average-case secure obfuscation DDH assumption Standard model 

References

  1. 1.
    Ateniese, G., Kevin, F., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. (TISSEC) 9(1), 1–30 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8_1 CrossRefGoogle Scholar
  3. 3.
    Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a nash equilibrium. In: IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17–20 October 2015, pp. 1480–1498 (2015)Google Scholar
  4. 4.
    Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 474–502. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9_20 CrossRefGoogle Scholar
  5. 5.
    Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998). doi:10.1007/BFb0054122 CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2_27 CrossRefGoogle Scholar
  7. 7.
    Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_50 CrossRefGoogle Scholar
  8. 8.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011, pp. 97–106 (2011)Google Scholar
  9. 9.
    Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Innovations in Theoretical Computer Science, ITCS 2014, Princeton, NJ, USA, 12–14 January 2014, pp. 1–12 (2014)Google Scholar
  10. 10.
    Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3_28 CrossRefGoogle Scholar
  11. 11.
    Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In: Proceedings of 14th ACM Conference on Computer and Communications Security, pp. 185–194. ACM (2007)Google Scholar
  12. 12.
    Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2_5 CrossRefGoogle Scholar
  13. 13.
    Chandran, N., Chase, M., Liu, F.-H., Nishimaki, R., Xagawa, K.: Re-encryption, functional re-encryption, and multi-hop re-encryption: a framework for achieving obfuscation-based security and instantiations from lattices. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 95–112. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0_6 CrossRefGoogle Scholar
  14. 14.
    Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and collusion-resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 404–421. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9_23 CrossRefGoogle Scholar
  15. 15.
    Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 316–332. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12678-9_19 CrossRefGoogle Scholar
  16. 16.
    Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8_4 CrossRefGoogle Scholar
  17. 17.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 40–49. IEEE (2013)Google Scholar
  18. 18.
    Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5_20 CrossRefGoogle Scholar
  19. 19.
    Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential barrier in obfustopia. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 156–181. Springer, Cham (2017). doi:10.1007/978-3-319-56617-7_6 CrossRefGoogle Scholar
  20. 20.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 169–178 (2009)Google Scholar
  21. 21.
    Goldreich, O.: The Foundations of Cryptography - Basic Techniques, vol. 1. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  22. 22.
    Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000). doi:10.1007/3-540-44448-3_34 CrossRefGoogle Scholar
  23. 23.
    Hada, S.: Secure obfuscation for encrypted signatures. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 92–112. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_5 CrossRefGoogle Scholar
  24. 24.
    Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7_13 CrossRefGoogle Scholar
  25. 25.
    Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78440-1_21 CrossRefGoogle Scholar
  26. 26.
    Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)MathSciNetGoogle Scholar
  27. 27.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Symposium on Theory of Computing, STOC 2014, New York, NY, USA, 31 May–03 June 2014, pp. 475–484 (2014)Google Scholar
  28. 28.
    Srinivasan, A., Rangan, C.P.: Efficiently obfuscating re-encryption program under DDH assumption. IACR Cryptology ePrint Archive 2015:822 (2015)Google Scholar
  29. 29.
    Wee, H.: On obfuscating point functions. In: Proceedings of 37th Annual ACM Symposium on Theory of Computing, pp. 523–532. ACM (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Akshayaram Srinivasan
    • 1
  • Chandrasekaran Pandu Rangan
    • 2
  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.Indian Institute of TechnologyMadrasIndia

Personalised recommendations