Education Extended: A Sociomaterialist Perspective on Science Education

  • Anna JobérEmail author
Part of the Cultural Studies of Science Education book series (CSSE, volume 15)


This essay uses a sociomaterialist perspective to shed new light on science education in general and scientific inquiry in particular. The focus is on human and non-human actors in science education—the pupil and the microscope. The analysis uses the concepts of figuration, apparatus and phenomenon to trace and illuminate performative figurations in science education. One of the conclusions is that the impact of events in a specific classroom extends far beyond local practices. In addition, it is shown that materialities are structuring forces, the crucial components that organize practices and produce values that in turn influence its members. In order to learn more about education, one has to step outside the immediate confines of the classroom in order to trace practices through assemblages of actors.


Apparatus Figuration Laboratory work Science education Sociomaterialism 


  1. Axelsson, T., Ideland, M., Jobér, A. & Serder, M. (2016, August). Helping hands: Exploring Scholl’s external network. Paper presented at the 2016 European conference on educational research, Dublin, Ireland.Google Scholar
  2. Barad, K. (1998). Getting real: Technoscientific practices and the materialization of reality. Differences, 10(2), 87–128.Google Scholar
  3. Barad, K. (2003). Posthumanist performativity: Toward an understanding of how matter comes to matter. Journal of Women in Culture & Society, 28(3), 801–831.CrossRefGoogle Scholar
  4. Carlone, H. (2003). Innovative science within and against a culture of ‘achievement’. Science Education, 87(3), 307–328.CrossRefGoogle Scholar
  5. Fenwick, T. (2011). Reading educational reform with actor network theory: Fluid spaces, otherings, and ambivalences. Educational Philosophy & Theory, 43(1), 114–134.CrossRefGoogle Scholar
  6. Fenwick, T., & Edwards, R. (2010). Actor–network theory in education. London: Routledge.Google Scholar
  7. Fenwick, T., Doyle, S., Michael, M., & Scoles, J. (2015). Matters of learning and education: Sociomaterial approaches in ethnographic research. In S. Bollig, M. Honig, S. Neumann, C. Seele, & C. (Eds.), MultiPluriTrans in educational ethnography: Approaching the multimodality, plurality and translocality of educational realities (pp. 141–162). Transcript Verlag: Bielefeld.Google Scholar
  8. Gunnarsson, K. (2015). Med önskan om kontroll: figurationer av hälsa i skolors hälsofrämjande arbete. (Doctoral thesis). Stockholm: Stockholm University.
  9. Haraway, D. (1987). A manifesto for cyborgs: Science, technology, and socialist feminism in the 1980s. Australian Feminist Studies, 2(4), 1–42.CrossRefGoogle Scholar
  10. Hultén, M. (2008). Naturens kanon: formering och förändring av innehållet i folkskolans och grundskolans naturvetenskap. (Doctoral thesis). Stockholm: Stockholm University.Google Scholar
  11. Isling Poromaa, P. (2015). The significance of materiality in shaping institutional habitus: Exploring dynamics preceding school effects. British Journal of Sociology of Education. doi: 10.1080/01425692.2015.1093406.
  12. Jobér, A. (2012). Social class in science class. (Doctoral thesis). Malmö: Lund University.
  13. Latour, B. (2005). Reassembling the social: An introduction to actor–network theory. Oxford: OUP.Google Scholar
  14. Lederman, N. G. (2008). Nature of science: Past, present and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–879). New York: Routledge.Google Scholar
  15. Lindström, K. & Ståhl, Å. (2014). Patchworking publics-in-the-making: Design, media and public engagement. (Doctoral thesis). Malmö: Malmö University.
  16. Lundin, M., & Lindahl, M. G. (2014). Negotiating the relevance of laboratory work: Safety, procedures and accuracy brought to the fore in science education. Nordina, 10(1), 32–45.Google Scholar
  17. Mol, A. (2000). Things and thinking: Some incorporations of intellectually. Quest XIV (1–2). Available at Accessed 17 May 2016.
  18. Munby, H., Cunningham, M., & Lock, C. (2000). School science culture: A case study of barriers to developing professional knowledge. Science Education, 84(2), 193–211.CrossRefGoogle Scholar
  19. Murdoch, J. (1997). Inhuman/nonhuman/human: Actor–network theory and the prospects for a Nondualistic and symmetrical perspective on nature and society. Environment and Planning, 15(6), 731–756.Google Scholar
  20. Osborne, J. & Dillon, J. (2008). Science education in Europe: Critical reflections: A report to the Nuffield foundation. Available at Accessed 25 Aug 2014.
  21. Pickering, A. (1995). The mangle of practice: Time, agency and science. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  22. Popkewitz, T. (2004). The alchemy of the mathematics curriculum: Inscriptions and the fabrication of the child. American Educational Research Journal, 41(1), 3–34.CrossRefGoogle Scholar
  23. Popkewitz, T. (2008). Cosmopolitanism and the age of school reform: Science, education, and making society by making the child. New York: Routledge.Google Scholar
  24. Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H. & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Available at Accessed 27 May 2015.
  25. Röhl, T. (2015). Transsituating education: Educational artefacts in the classroom and beyond. In S. Bollig, M. Honig, S. Neumann, C. Seele, & C. (Eds.), MultiPluriTrans in educational ethnography: Approaching the multimodality, plurality and translocality of educational realities (pp. 121–139). Transcript Verlag: Bielefeld.Google Scholar
  26. Rudolph, J. L. (2012). Teaching materials and the fate of dynamic biology in American classrooms after sputnik. Technology and Culture, 53(1), 1–36. doi: 10.1353/tech.2012.0037.CrossRefGoogle Scholar
  27. Serder, M. (2015). Möten med PISA: Kunskapsmätning som samspel mellan elever och provuppgifter i och om naturvetenskap. (Doctoral thesis). Malmö: Malmö University.
  28. Skolverket. (2011). Curriculum for the compulsory school, preschool class and the leisure-time centre 2011. Available at Accessed 16 Dec 2011.
  29. Zogza, V., & Ergazaki, M. (2013). Inquiry-based science education: Theory and praxis. Review of Science, Mathematics & ICT Education, 7(2), 3–8.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Malmö UniversityMalmöSweden

Personalised recommendations