Automatic Segmentation of Abdominal MRI Using Selective Sampling and Random Walker

  • Janine ThomaEmail author
  • Firat Ozdemir
  • Orcun Goksel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10081)


MRI segmentation is a challenging task due to low anatomical contrast and large inter-patient variation. We propose a feature-driven automatic segmentation framework, combining voxel-wise classification with a Random-Walker (RW) based spatial regularization. Typically, such steps are treated independently, i.e. classification outcome is maximized without taking into account the regularization to follow. Herein we present a method for selective sampling of training patches, in view of the posterior spatial regularization. This aims to concentrate training samples near desired anatomical boundaries, around which the gain from a subsequent RW regularization will potentially be minimal. This trades off a lower classification accuracy for a higher joint segmentation performance. We compare our proposed sampling strategy to conventional uniform sampling on 20 full-body MR T1 scans from the VISCERAL dataset, both with RW and Markov Random Fields regularizations, showing Dice improvements of up to 12\(\times \) with the proposed approach.



This work was funded by the Swiss National Science Foundation (SNSF) and the Highly Specialized Medicine (HSM) project of Zurich Department of Health.


  1. 1.
    Kahl, F., Alvén, J., Enqvist, O., Fejne, F., et al.: Good features for reliable registration in multi-atlas segmentation. In: ISBI, pp. 12–17 (2015)Google Scholar
  2. 2.
    Wolz, R., Chu, C., Misawa, K., Fujiwara, M., Mori, K., Rueckert, D.: Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans. Med. Imaging 32, 1723–1730 (2013)CrossRefGoogle Scholar
  3. 3.
    Gass, T., Szekely, G., Goksel, O.: Multi-atlas segmentation and landmark localization in images with large field of view. In: Menze, B., et al. (eds.) MCV 2014. LNCS, vol. 8848, pp. 171–180. Springer, Cham (2014). doi: 10.1007/978-3-319-13972-2_16 Google Scholar
  4. 4.
    Heinrich, M.P., Maier, O., Handels, H.: Multi-modal multi-atlas segmentation using discrete optimisation and self-similarities. In: ISBI, pp. 27–30 (2015)Google Scholar
  5. 5.
    He, B., Huang, C., Jia, F.: Fully automatic multi-organ segmentation based on multi-boost learning and statistical shape model search. In: ISBI, pp. 18–21 (2015)Google Scholar
  6. 6.
    Okada, T., Linguraru, M.G., Hori, M., Suzuki, Y., et al.: Multi-organ segmentation in abdominal CT images. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3986–3989. IEEE (2012)Google Scholar
  7. 7.
    Chen, X., Udupa, J.K., Bagci, U., Zhuge, Y., Yao, J.: Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans. Image Process. 21, 2035–2046 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gass, T., Szkely, G., Goksel, O.: Simultaneous segmentation and multiresolution nonrigid atlas registration. IEEE Trans. Image Process. 23, 2931–2943 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Luo, Q., Qin, W., Wen, T., Gu, J., et al.: Segmentation of abdomen MR images using kernel graph cuts with shape priors. Biomed. Eng. Online 12, 1–19 (2013)CrossRefGoogle Scholar
  10. 10.
    Yang, X., Minh, H., Cheng, T., Sung, K.H., Liu, W.: Automatic segmentation of renal compartments in DCE-MRI images. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 3–11. Springer, Cham (2015). doi: 10.1007/978-3-319-24553-9_1 CrossRefGoogle Scholar
  11. 11.
    Mukhopadhyay, A., Oksuz, I., Bevilacqua, M., Dharmakumar, R., Tsaftaris, S.A.: Unsupervised myocardial segmentation for cardiac MRI. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 12–20. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_2 CrossRefGoogle Scholar
  12. 12.
    Jimenez-del-Toro, O., Muller, H., Krenn, M., Gruenberg, K., et al.: Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: visceral anatomy benchmarks. IEEE Trans. Med. Imaging 35, 2459–2475 (2016)CrossRefGoogle Scholar
  13. 13.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Mahapatra, D., Schuffler, P.J., Tielbeek, J.A.W., Makanyanga, J.C., et al.: Automatic detection and segmentation of crohn’s disease tissues from abdominal MRI. IEEE Trans. Med. Imaging 32, 2332–2347 (2013)CrossRefGoogle Scholar
  15. 15.
    Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theor. 21, 32–40 (1975)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer Vision LabETH ZurichZürichSwitzerland
  2. 2.Computer-assisted Applications in MedicineETH ZurichZürichSwitzerland

Personalised recommendations