Advertisement

Efficient Protocols for Private Database Queries

  • Tushar Kanti SahaEmail author
  • Mayank
  • Takeshi Koshiba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10359)

Abstract

We consider the problem of processing private database queries over encrypted data in the cloud. To do this, we propose a protocol for conjunctive query and another for disjunctive query processing using somewhat homomorphic encryption in the semi-honest model. In 2016, Kim et al. [IEEE Trans. on Dependable and Secure Comput.] showed an FHE-based query processing with equality conditions over encrypted data. We improve the performance of processing private conjunctive and disjunctive queries with the low-depth equality circuits than Kim et al.’s circuits. To get the low-depth circuits, we modify the packing methods of Saha and Koshiba [APWConCSE 2016] to support an efficient batch computation for our protocols with a few multiplications. Our implementation shows that our protocols work faster than Kim et al.’s protocols for both conjunctive and disjunctive query processing along with a better security level. We are also able to provide security to both attributes and values appeared in the predicate of the conjunctive and disjunctive queries whereas Kim et al. provided the security to the values only.

Keywords

Private Database Queries Conjunctive Disjunctive Packing method Homomorphic Encryption Batch technique 

Notes

Acknowledgment

This research is supported by KAKENHI Grant Numbers JP16H01705, JP17H01695, and JP24106008 for Scientific Research on Innovative Areas.

References

  1. 1.
    Barker, E.: Recommendation for key management. In: NIST Special Publication 800–57 Part 1 Rev. 4. NIST (2016)Google Scholar
  2. 2.
    Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38980-1_7 CrossRefGoogle Scholar
  3. 3.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theor. 6(3), 13 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cheon, J.H., Kim, M., Kim, M.: Search-and-compute on encrypted data. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 142–159. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48051-9_11 CrossRefGoogle Scholar
  5. 5.
    Cheon, J.H., Kim, M., Kim, M.: Optimized search-and-compute circuits and their application to query evaluation on encrypted data. IEEE Trans. Inf. Forensics Secur. 11(1), 188–199 (2016). IEEE Press, New YorkCrossRefGoogle Scholar
  6. 6.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on Theory of Computing - STOC 2009, pp. 169–178. ACM, New York (2009)Google Scholar
  7. 7.
    Kim, M., Lee, H.T., Ling, S., Ren, S.Q., Tan, B.H.M., Wang, H.: Better security for queries on encrypted databases. IACR Cryptology ePrint Archive, 2016/470 (2016)Google Scholar
  8. 8.
    Kim, M., Lee, H.T., Ling, S., Wang, H.: On the efficiency of FHE-based private queries. IEEE Trans. Dependable Secure Comput.  10.1109/TDSC.2016.2568182. (to appear)
  9. 9.
    Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: ACM Workshop on Cloud Computing Security Workshop, CCSW 2011, pp. 113–124. ACM, New York (2011)Google Scholar
  10. 10.
    Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphism. In: DeMillo, R.A., Dobkin, D.P., Jones, A.K., Lipton, R.J. (eds.) Foundations of Secure Computation, pp. 169–177. Academic Press, New York (1978)Google Scholar
  11. 11.
    Saha, T.K., Koshiba, T.: Private equality test using ring-LWE somewhat homomorphic encryption. In: 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWConCSE), pp. 1–9. IEEE (2016)Google Scholar
  12. 12.
    Saha, T.K., Koshiba, T.: Private conjunctive query over encrypted data. In: Joye, M., Nitaj, A. (eds.) Progress in Cryptology - AFRICACRYPT 2017. Lecture Notes in Computer Science, vol. 10239, pp. 149–164. Springer, Cham (2017)CrossRefGoogle Scholar
  13. 13.
    The PARI\(\sim \)Group, PARI/GP version 2.9.1, Bordeaux (2014). http://pari.math.u-bordeaux.fr/
  14. 14.
    Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Practical packing method in somewhat homomorphic encryption. In: Garcia-Alfaro, J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W.M. (eds.) DPM/SETOP -2013. LNCS, vol. 8247, pp. 34–50. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54568-9_3 CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Division of Mathematics, Electronics, and Informatics, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
  2. 2.Department of Computer Science and EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  3. 3.Faculty of Education and Integrated Arts and SciencesWaseda UniversityTokyoJapan

Personalised recommendations