Advertisement

Privacy-Preserving Community-Aware Trending Topic Detection in Online Social Media

  • Theodore GeorgiouEmail author
  • Amr El Abbadi
  • Xifeng Yan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10359)

Abstract

Trending Topic Detection has been one of the most popular methods to summarize what happens in the real world through the analysis and summarization of social media content. However, as trending topic extraction algorithms become more sophisticated and report additional information like the characteristics of users that participate in a trend, significant and novel privacy issues arise. We introduce a statistical attack to infer sensitive attributes of Online Social Networks users that utilizes such reported community-aware trending topics. Additionally, we provide an algorithmic methodology that alters an existing community-aware trending topic algorithm so that it can preserve the privacy of the involved users while still reporting topics with a satisfactory level of utility.

Notes

Acknowledgments

This work is supported by NSF grant CNS 1649469.

References

  1. 1.
    Achrekar, H., Gandhe, A., Lazarus, R., Yu, S.H., Liu, B.: Predicting flu trends using Twitter data. In: Computer Communications Workshops, pp. 702–707 (2011)Google Scholar
  2. 2.
    Boldi, P., Bonchi, F., Gionis, A., Tassa, T.: Injecting uncertainty in graphs for identity obfuscation. Proc. VLDB Endow. 5(11), 1376–1387 (2012). http://dx.doi.org/10.14778/2350229.2350254 CrossRefGoogle Scholar
  3. 3.
    Bonchi, F., Gionis, A., Tassa, T.: Identity obfuscation in graphs through the information theoretic lens. In: Proceedings of the International Conference on Data Engineering, pp. 924–935. ICDE, Washington, DC (2011). http://dx.doi.org/10.1109/ICDE.2011.5767905
  4. 4.
    Campan, A., Truta, T.M.: Data and structural k-anonymity in social networks. In: PinKDD 2008, pp. 33–54 (2009). http://dx.doi.org/10.1007/978-3-642-01718-6_4
  5. 5.
    Culotta, A., Ravi, N.K., Cutler, J.: Predicting the demographics of twitter users from website traffic data. In: Proceedings of the Conference on Artificial Intelligence, pp. 72–78 (2015). http://dl.acm.org/citation.cfm?id=2887007.2887018
  6. 6.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). doi: 10.1007/11787006_1 CrossRefGoogle Scholar
  7. 7.
    Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N., Yekhanin, S.: Pan-private streaming algorithms. In: Proceedings of the Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China, pp. 66–80, 5–7 January 2010. http://conference.itcs.tsinghua.edu.cn/ICS2010/content/papers/6.html
  8. 8.
    Georgiou, T., El Abbadi, A., Yan, X.: Extracting topics with focused communities for social content recommendation. In: Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, CSCW 2017, Portland, OR, USA, pp. 1432–1443, 25 February–1 March 2017. http://dl.acm.org/citation.cfm?id=2998259
  9. 9.
    LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: efficient full-domain k-anonymity. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 49–60. ACM (2005)Google Scholar
  10. 10.
    Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: ICDE 2007, pp. 106–115 (2007)Google Scholar
  11. 11.
    Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1) (2007). http://doi.acm.org/10.1145/1217299.1217302
  12. 12.
    Nazi, A., Thirumuruganathan, S., Hristidis, V., Zhang, N., Shaban, K., Das, G.: Query hidden attributes in social networks. In: 2014 IEEE International Conference on Data Mining Workshop, pp. 886–891, December 2014Google Scholar
  13. 13.
    Nilsson, N.J.: Problem-Solving Methods in Artificial Intelligence. McGraw-Hill Pub. Co., New York (1971)Google Scholar
  14. 14.
    Raymond, H., Murat, K., Bhavani, T.: Preventing private information inference attacks on social networks. IEEE Trans. Knowl. Data Eng. 25(8), 1849–1862 (2013). http://dx.doi.org/10.1109/TKDE.2012.120 CrossRefGoogle Scholar
  15. 15.
    Ryu, E., Rong, Y., Li, J., Machanavajjhala, A.: Curso: protect yourself from curse of attribute inference: a social network privacy-analyzer. In: Proceedings of the ACM SIGMOD Workshop on Databases and Social Networks, DBSocial 2013, New York, NY, USA, pp. 13–18 (2013). http://doi.acm.org/10.1145/2484702.2484706
  16. 16.
    Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001). http://dx.doi.org/10.1109/69.971193 CrossRefGoogle Scholar
  17. 17.
    Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information. In: PODS, vol. 98, p. 188 (1998)Google Scholar
  18. 18.
    Schwartz, H., Eichstaedt, J., Kern, M., Dziurzynsk, L., Ramones, S.: Personality, gender, and age in the language of social media: the open-vocabulary approach. PLoS ONE 8(9), e73791 (2013). https://doi.org/10.1371/journal.pone.0073791 CrossRefGoogle Scholar
  19. 19.
    Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001). http://doi.acm.org/10.1145/584091.584093 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(05), 571–588 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Talukder, N., Ouzzani, M., Elmagarmid, A.K., Elmeleegy, H., Yakout, M.: Privometer: privacy protection in social networks. In: Workshops Proceedings of the International Conference on Data Engineering, ICDE, pp. 266–269 (2010). http://dx.doi.org/10.1109/ICDEW.2010.5452715
  22. 22.
    Tassa, T., Cohen, D.J.: Anonymization of centralized and distributed social networks by sequential clustering. IEEE Trans. Knowled. Data Eng. 25(2), 311–324 (2013)CrossRefGoogle Scholar
  23. 23.
    Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two natural hazards events: what Twitter may contribute to situational awareness. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp. 1079–1088. ACM (2010)Google Scholar
  24. 24.
    Zhang, H.: The optimality of Naive Bayes. AA 1(2), 3 (2004)Google Scholar
  25. 25.
    Zheleva, E., Getoor, L.: Preserving the privacy of sensitive relationships in graph data. In: International Conference on Privacy, Security, and Trust in KDD, pp. 153–171 (2008). http://dl.acm.org/citation.cfm?id=1793474.1793485
  26. 26.
    Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles. In: Proceedings of the International Conference on World Wide Web, pp. 531–540 (2009). http://doi.acm.org/10.1145/1526709.1526781

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations