Advertisement

Integer Approximate Cosine/Sine-Modulated Filter Banks

  • Vladimir Britanak
  • K. R. Rao
Chapter

Abstract

Digital audio signals to be processed are integer-valued. But the perfect reconstruction cosine/sine-modulated filter banks and cosine-modulated QMF banks are real-valued transforms which map integer signal into real-valued spectral coefficients. Although their fast algorithms reduce the computational complexity, due to floating-point finite-length representation and corresponding rounding-off errors they cannot be used for lossless audio coding. Actually, almost all modern perceptual audio coding schemes developed so far operate in floating-point arithmetic and therefore, are lossy in nature. However, some audio coding applications require completely lossless preservation of the audio signal. An enabling technology for transform-based lossless audio coding is the integer transform. Integer transform is a transform which maps integers to integers by a reversible (invertible) way so that it preserves all mathematical properties of the original real-valued transform such as perfect reconstruction, energy compaction property and fast algorithm. Indeed, the integer modified discrete cosine transform (IntMDCT) or integer modulated lapped transform (IntMLT) enabled to design and implement this innovative coding technology for scalable lossy to lossless audio coding. The local and global methods to integer approximation of perfect reconstruction cosine/sine-modulated filter banks and cosine-modulated QMF banks are discussed in detail. They are based on computational methods of linear algebra, matrix theory and matrix computations, and in particular, on the matrix decompositions. In fact, the scalar and block matrix decompositions are powerful mathematical tools to construct the reversible (invertible) integer transforms.

References

  1. 1.
    J.A.S. Angus, Finite fields transforms for lossless audio signal processing, in 105th AES Convention, San Francisco, CA, September (1998). Preprint #483Google Scholar
  2. 2.
    M. Hans, R.W. Schafer, Lossless compression of digital audio. IEEE Signal Process. Mag. 18(4), 21–32 (2001)Google Scholar
  3. 3.
    ISO/IEC 14496–3:2005/Amd.2:2006, Coding of audio–visual objects – Part 3: audio, amendment 2: audio lossless coding (ALS), New Audio Profiles and BSAC Extensions. International Standards Organization, Geneva, Switzerland (2006)Google Scholar
  4. 4.
    J. Koller, T. Sporer, K. Brandenburg, Improving lossless audio coding, in Proceedings of the 17th International AES Conference: High–quality Audio Coding, Florence, Italy, August (1999), pp. 299–306Google Scholar
  5. 5.
    T. Liebchen, Y.A. Reznik, MPEG-4 ALS: an emerging standard for lossless audio coding, in Proceedings of Data Compression Conference (DCC’2006), Snowbird, UT, March (2006), pp. 439–448Google Scholar
  6. 6.
    T. Moriya, N. Iwakami, A. Jin, T. Mori, A design of lossy and lossless scalable audio coding, in Proceedings of the IEEE ICASSP’2000, Istanbul, June (2000), pp. 889–892Google Scholar
  7. 7.
    T. Moriya, A. Jin, T. Mori, K. Ikeda, T. Kaneko, Lossless scalable audio coder and quality enhancement, in Proceedings of the IEEE ICASSP’2002, vol. 2, Orlando, FL, May (2002), pp. 1829–1832Google Scholar
  8. 8.
    M. Purat, T. Liebchen, P. Noll, Lossless transform coding of audio signals, in 102nd AES Convention, Munich, Germany, March (1997). Preprint #4414Google Scholar

Integer DCT/DST (IntDCT/IntDST)

  1. 9.
    V. Britanak, P. Yip, K.R. Rao, Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations, Chap. 5 (Academic, Elsevier Science, Amsterdam, 2007), pp. 141–304Google Scholar
  2. 10.
    A.R. Calderbank, I. Daubechies, W. Sweldens, B.L. Yeo, Wavelet transforms that map integers to integers. Appl. Comput. Harmon. Anal. 5, 332–369 (1998)MathSciNetzbMATHGoogle Scholar
  3. 11.
    R.J. Cintra, F.M. Bayer, C.J. Tablada, Low-complexity 8-point DCT approximations based on integer functions. Signal Process. 99(6), 201–214 (2014)Google Scholar
  4. 12.
    V.K. Goyal, Transform coding with integer-to-integer transforms. IEEE Trans. Inf. Theory 46(2), 465–473 (2000)MathSciNetzbMATHGoogle Scholar
  5. 13.
    P. Hao, Q. Shi, Matrix factorizations for reversible integer mapping. IEEE Trans. Signal Process. 49(10), 2314–2324 (2001)MathSciNetzbMATHGoogle Scholar
  6. 14.
    X. Li, B. Tao, M.T. Orchard, On implementing transforms from integers to integers, in Proceedings of the IEEE International Conference on Image Processing (ICIP’98), Chicago, IL, October (1998), pp. 881–885Google Scholar
  7. 15.
    G. Plonka, A global method for invertible integer DCT and integer wavelet algorithms. Appl. Comput. Harmon. Anal. 16(2), 90–110 (2004)MathSciNetzbMATHGoogle Scholar
  8. 16.
    G. Plonka, M. Tasche, Invertible integer DCT algorithms. Appl. Comput. Harmon. Anal. 15(1), 70–88 (2003)MathSciNetzbMATHGoogle Scholar
  9. 17.
    M. Primbs, Worst–case error analysis of lifting-based fast DCT-algorithms. IEEE Trans. Signal Process. 53(8), 3211–3218 (2005). Part 2MathSciNetzbMATHGoogle Scholar
  10. 18.
    Y. She, P. Hao, On the necessity and sufficiency of PLUS factorizations. Linear Algebra Appl. 400, 193–202 (2005)MathSciNetzbMATHGoogle Scholar
  11. 19.
    S. Srinivasan, Modulo transforms – An alternative to lifting. IEEE Trans. Signal Process. 54(5), 1864–1874 (2006)zbMATHGoogle Scholar
  12. 20.
    C.J. Tablada, F.M. Bayer, R.J. Cintra, A class of DCT approximations based on the Feigh–Winograd algorithm. Signal Process. 113(8), 38–51 (2015)Google Scholar
  13. 21.
    J. Wang, J. Sun, S. Yu, 1-D and 2-D transforms from integers to integers, in Proceedings of the IEEE ICASSP’2003, vol. 2, Hong Kong, April (2003), pp. 549–552Google Scholar
  14. 22.
    L. Yang, P. Hao, Infinity-norm rotation transforms. IEEE Trans. Signal Process. 57(7), 2594–2603 (2009)MathSciNetzbMATHGoogle Scholar

Integer FFT (IntFFT)

  1. 23.
    S.C. Chan, P.M. Yiu, An efficient multiplierless approximation of the fast Fourier transform using sum-of-powers-of–two (SOPOT) coefficients. IEEE Signal Process. Lett. 9(10), 322–325 (2002)Google Scholar
  2. 24.
    S. Oraintara, Y.-J. Chen, T. Nguyen, Integer fast Fourier transform (IntFFT), in Proceedings of the IEEE ICASSP’2001, Salt Lake City, UT, May (2001)Google Scholar
  3. 25.
    S. Oraintara, Y.-J. Chen, T. Nguyen, Integer fast Fourier transform. IEEE Trans. Signal Process. 50(3), 607–618 (2002)MathSciNetzbMATHGoogle Scholar
  4. 26.
    K.R. Rao, D.N. Kim, J.J. Hwang, Integer fast fourier transform, in Fast Fourier Transform: Algorithms and Applications (Springer Science + Business Media B. V., Heidelberg, 2010), pp. 111–126zbMATHGoogle Scholar
  5. 27.
    Y. Yokotani, S. Oraintara, R. Geiger, G. Schuller, K.R. Rao, A comparison of integer fast Fourier transforms for lossless coding, in Proceedings of the International Symposium on Communications and Information Technologies (ISCIT 2004), Sapporo, October (2004), pp. 1069–1073Google Scholar

Reversible Integer Lapped Orthogonal Transforms and Integer MLT

  1. 28.
    S.C. Chan, P.M. Yiu, Multiplier–less discrete sinusoidal and lapped transforms using sum-of-powers-of-two (SOPOT) coefficients, in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’2001), vol. 2, Sydney, May (2001), pp. 13–16Google Scholar
  2. 29.
    K. Komatsu, K. Sezaki, Design of lossless block transforms and filter banks for image coding. IEICE Trans. Fundam. E82–A(8), 1656–1664 (1999)Google Scholar
  3. 30.
    K. Komatsu, K. Sezaki, Design of lossless LOT and its performance evaluation, in Proceedings of the IEEE ICASSP’2000, vol. 4, Istanbul, June (2000), pp. 2119–2122Google Scholar
  4. 31.
    J. Li, A progressive to lossless embedded audio coder (PLEAC) with reversible modulated lapped transform, in Proceedings of the IEEE International Conference on Multimedia and Expo (ICME’2003), vol. 3, Baltimore, MD, July (2003), pp. 221–224Google Scholar
  5. 32.
    H.S. Malvar, Lossless and near-lossless audio compression using integer-reversible modulated lapped transforms, in Proceedings of the IEEE Data Compression Conference (DCC’2007), Snowbird, UT, March (2007)Google Scholar
  6. 33.
    T.D. Tran, The LiftLT: fast-lapped transforms via lifting steps. IEEE Signal Process Lett. 7(6), 145–148 (2000)Google Scholar

Integer MDCT (IntMDCT) and Approximation Error

  1. 34.
    S.C. Chan, W. Yiu, K.L. Ho, Multiplierless perfect reconstruction modulated filter banks with sum-of-powers-of-two coefficients. IEEE Signal Process. Lett. 8(6), 163–166 (2001)Google Scholar
  2. 35.
    R. Geiger, G. Schuller, Integer low delay and MDCT filter banks, in Proceedings of the 36th Asilomar Conference on Signals, Systems and Computers, vol. 1, Pacific Grove, CA, November (2002), pp. 811–815Google Scholar
  3. 36.
    R. Geiger, Y. Yokotani, G. Schuller, Improved integer transforms for lossless audio coding, in Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, November (2003), pp. 2119–2123Google Scholar
  4. 37.
    R. Geiger, T. Sporer, J. Koller, K. Brandenburg, Audio coding based on integer transforms, in 111th AES Convention, New York, NY, September (2001). Preprint #5471Google Scholar
  5. 38.
    R. Geiger, J. Herre, J. Koller, K. Brandenburg, IntMDCT – A link between perceptual and lossless audio coding, in Proceedings of the IEEE ICASSP’2002, vol. 2, Orlando, FL, May (2002), pp. 1813–1816Google Scholar
  6. 39.
    R. Geiger, J. Herre, G. Schuller, T. Sporer, Fine grain scalable perceptual and lossless audio coding based on IntMDCT, in Proceedings of the IEEE ICASSP’2003, vol. 5, Hong Kong, April (2003), pp. 445–448Google Scholar
  7. 40.
    R. Geiger, G. Schuller, T. Sporer, Fine grain scalable perceptual and lossless audio coding based on IntMDCT, in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, October (2003), p. 50Google Scholar
  8. 41.
    R. Geiger, Y. Yokotani, G. Schuller, J. Herre, Improved integer transforms using multidimensional lifting, in Proceedings of the IEEE ICASSP’2004, vol. 2, Montreal, May (2004), pp. 1005–1008Google Scholar
  9. 42.
    H. Huang, R. Yu, X. Lin, S. Rahardja, Method for realising reversible integer type-IV discrete cosine transform. Electron. Lett. 40(8), 514–515 (2004)Google Scholar
  10. 43.
    H. Huang, S. Rahardja, R. Yu, X. Lin, A fast algorithm of integer MDCT for lossless audio coding, in Proceedings of the IEEE ICASSP’2004, vol. 4, Montreal, May (2004), pp. 177–180Google Scholar
  11. 44.
    H. Huang, S. Rahardja, R. Yu, X. Lin, Integer MDCT with enhanced approximation of the DCT-IV. IEEE Trans. Signal Process. 54(3), 1156–1159 (2006)zbMATHGoogle Scholar
  12. 45.
    J. Li, Reversible FFT and MDCT via matrix lifting, in Proceedings of the IEEE ICASSP’2004, vol. 4, Montreal, May (2004), pp. 173–176Google Scholar
  13. 46.
    J. Li, Low noise reversible MDCT (RMDCT) and its application in progressive-to-lossless embedded audio coding. IEEE Trans. Signal Process. 53(5), 1870–1880 (2005)MathSciNetzbMATHGoogle Scholar
  14. 47.
    V.M. Prasad, C.D. Creusere, Analyzing reversible lapped transforms using Reng probing, in Proceedings of the 40th Asilomar Conference on Signals, System and Computers, Pacific Grove, CA, October–November (2006), pp. 873–877Google Scholar
  15. 48.
    Y. Yokotani, S. Oraintara, Lossless audio compression using integer modified discrete cosine transform, in Proceedings of the IEEE International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS’2003), Awaji Island, December (2003), pp. 120–126Google Scholar
  16. 49.
    Y. Yokotani, R. Geiger, G. Schuller, S. Oraintara, K.R. Rao, Improved lossless audio coding using the noise-shaped IntMDCT, in Proceedings of the IEEE 11th Digital Signal Processing Workshop and Signal Processing Education Workshop, Taos Ski Valley, NM, August (2004), pp. 356–360Google Scholar
  17. 50.
    Y. Yokotani, S. Oraintara, R. Geiger, G. Schuller, K.R. Rao, Approximation error analysis for transform-based lossless audio coding, in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM’2004), vol. 2, Dallas, TX, November–December (2004), pp. 595–599Google Scholar
  18. 51.
    Y. Yokotani, R. Geiger, G.D.T. Schuller, S. Oraintara, K.R. Rao, Lossless audio coding using the IntMDCT and rounding error shaping. IEEE Trans. Audio Speech Lang. Process. 14(6), 2201–2211 (2006)Google Scholar
  19. 52.
    Y. Zhang, G. Gao, A scalable and lossless audio coding system based on integer transform, in Proceedings of the IEEE International Symposium on Communications and Information Technologies (ISCIT’2006), Bangkok, September–October (2006), pp. 414–417Google Scholar
  20. 53.
    Y. Zhang, R. Hu, Scalable audio coding based on integer transform, in Proceedings of the IEEE 1st International Conference on Communications and Networking in China (ChinaCom’2006), Beijing, October (2006), pp. 1–5Google Scholar

IntMDCT in MP3 Audio Coding

  1. 54.
    T. Krishnan, S. Oraintara, Fast and lossless implementation of the forward and inverse MDCT computation in MPEG audio coding, in Proceedings of of the IEEE International Symposium on Circuits and Systems (ISCAS’2002), vol. 2, Phoenix, Scottsdale, AR, May (2002), pp. 181–184Google Scholar
  2. 55.
    T. Krishnan, S. Oraintara, The integer MDCT and its application in the MPEG layer III audio, in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’2003), vol. 4, Bangkok, May (2003), pp. 301–304Google Scholar
  3. 56.
    H.-J. Quan, T. Zhang, Y.-N. Che, L. Zhao, The application of integer MDCT in MP3 audio, in Proceedings of the IEEE International Conference on Computer Science and Network Technology, Dalian, December (2011), pp. 1153–1157Google Scholar
  4. 57.
    L. Wang, J. Wu, L. Senhadji, H. Shu, Comparison of three IntMDCT algorithms in audio compression. J. Southwest Univ. (Nat. Sci. Ed.). 42(2), 259–264 (2012) [in Chinesse]Google Scholar

MPEG-4 HD-AAC/SLS Scalable Lossless Audio Coding Standard

  1. 58.
    R. Geiger, G. Schuller, J. Herre, R. Sperschneider, T. Sporer, Scalable perceptual and lossless audio coding based on MPEG-4 AAC, in 115th AES Convention, New York, NY, October (2003). Preprint #5868Google Scholar
  2. 59.
    R. Geiger, R. Yu, J. Herre, S. Rahardja, S.-W. Kim, X. Lin, M. Schmidt, ISO/IEC MPEG-4 High-definition scalable advanced audio coding. J. Audio Eng. Soc. 55(1/2), 27–43 (2007)Google Scholar
  3. 60.
    ISO/IEC JTC1/SC29/WG11 Moving Picture Experts Group, Call for proposals on MPEG-4 lossless audio coding. No. N5040, Awaji Island (2002)Google Scholar
  4. 61.
    ISO/IEC JTC1/SC29/WG11 Moving Picture Experts Group, Final call for proposals on MPEG-4 lossless audio coding, No. N5208, Shanghai, China, October (2002)Google Scholar
  5. 62.
    ISO/IEC JTC1/SC29/WG11 Moving Picture Experts Group, Workplan for audio scalable lossless audio coding (SLS). No. N5720, Trondheim, Norway, July (2003)Google Scholar
  6. 63.
    ISO/IEC 14496–3:2005/Amd.3:2006, Coding of audio–visual objects – Part 3: audio, amendment 3: scalable lossless coding (SLS). International Standards Organization, Geneva, Switzerland (2006)Google Scholar
  7. 64.
    T. Li, S. Rahardja, R. Yu, S. Koh, Study on rounding errors of IntMDCT in perceptual audio coding, in Proceedings of the 7th IEEE International Symposium on Multimedia (ISM’2005), Irvine, CA, December (2005)Google Scholar
  8. 65.
    T. Li, S. Rahardja, R. Yu, S.N. Koh, On integer MDCT for perceptual audio coding. IEEE Trans. Audio Speech Lang. Process. 15(8), 2236–2248 (2007)Google Scholar
  9. 66.
    R. Yu, X. Lin, S. Rahardja, C.C. Ko, A fine granular scalable perceptually lossy and lossless audio codec, in Proceedings of the IEEE International Conference on Multimedia & Expo (ICME’2003), vol. I, Baltimore, MD, July (2003), pp. 65–68Google Scholar
  10. 67.
    R. Yu, X. Lin, S. Rahardja, C.C. Ko, A scalable lossy to lossless audio coder for MPEG-4 lossless audio coding, in Proceedings of the IEEE ICASSP’2004, vol. III, Montreal, Canada, May (2004), pp. 1004–1007Google Scholar
  11. 68.
    R. Yu, R. Geiger, S. Rahardja, J. Herre, X. Lin, H. Huang, MPEG-4 scalable to lossless audio coding, in 117th AES Convention, San Francisco, CA, October (2004). Preprint #6183Google Scholar
  12. 69.
    R. Yu, X. Lin, S. Rahardja, C. C. Ko, H. Huang, Improving coding efficiency for MPEG-4 audio scalable lossless coding, in Proceedings of the IEEE ICASSP’2005, vol. III, Philadephia, PA, May (2005), pp. 169–172Google Scholar
  13. 70.
    R. Yu, X. Lin, S. Rahardja, H. Huang, MPEG-4 scalable to lossless audio coding – Emerging international standard for digital audio compression, in Proceedings of the IEEE 7th Workshop on Multimedia Signal Processing, Shanghai, China, October–November (2005), pp. 1–4Google Scholar
  14. 71.
    R. Yu, S. Rahardja, X. Lin, C.C. Ko, A fine granular scalable to lossless audio coding. IEEE Trans. Audio Speech Lang. Process. 14(4), 1352–1363 (2006)Google Scholar
  15. 72.
    R. Yu, T. Li, S. Rahardja, Perceptually enhanced bit–plane coding for scalable audio, in Proceedings of the IEEE International Conference on Multimedia & Expo (ICME’2006), Toronto, July (2006), pp. 1153–1156Google Scholar

Supporting Literature

  1. 73.
    T.M. Apostol, Historical introduction, in Introduction to Analytic Number Theory (Springer, New York, 1976), pp. 1–12Google Scholar
  2. 74.
    G. Bi, Y. Zeng, Transforms and Fast Algorithms for Signal Analysis and Representations, Chap. 6 (Birkhäuser, Boston, 2004), pp. 210–211zbMATHGoogle Scholar
  3. 75.
    V. Britanak, New universal rotation-based fast computational structures for an efficient implementation of the DCT-IV/DST-IV and analysis/synthesis MDCT/MDST filter banks. Signal Process. 89(11), 2213–2232 (2009)zbMATHGoogle Scholar
  4. 76.
    V. Britanak, H.J. Lincklaen Arriëns, Fast computational structures for an efficient implementation of the complete TDAC analysis/synthesis MDCT/MDST filter banks. Signal Process. 89(7), 1379–1394 (2009)zbMATHGoogle Scholar
  5. 77.
    V. Britanak, K.R. Rao, A new fast algorithm for the unified forward and inverse MDCT/MDST computation. Signal Process. 82(3), 433–459 (2002)zbMATHGoogle Scholar
  6. 78.
    M. Bosi, R.E. Goldberg, Audio coding standards, in Introduction to Digital Audio Coding and Standards, Part II (Springer Science+Business Media, New York, 2003)Google Scholar
  7. 79.
    P. Duhamel, B. Piron, J.M. Etcheto, On computing the inverse DFT. IEEE Trans. Acoust. Speech Signal Process. 36(2), 285–286 (1988)zbMATHGoogle Scholar
  8. 80.
    F.R. Gantmacher, The Theory of Matrices, 2nd edn. (Nauka, Moscow, 1966) [in Russian], English translation: Vols. 1 and 2, (Chelsea, New York, 1959)zbMATHGoogle Scholar
  9. 81.
    G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (The Johns Hopkins University Press, Baltimore, MD, 1996)zbMATHGoogle Scholar
  10. 82.
    H.S. Malvar, Signal Processing with Lapped Transforms, Chap. 2 (Artech House, Norwood, MA, 1992), pp. 71–75Google Scholar
  11. 83.
    H.J. Nussbaumer, Elements of number theory and polynomial algebra, in Fast Fourier Transform and Convolution Algorithms, Chap. 2 (Springer, Berlin, 1981), pp. 4–31Google Scholar
  12. 84.
    G. Plonka, M. Tasche, Fast and numerically stable algorithms for discrete cosine transforms. Linear Algebra Appl. 394(1), 309–345 (2005)MathSciNetzbMATHGoogle Scholar
  13. 85.
    J.P. Princen, A.W. Johnson, A.B. Bradley, Sub–band/transform coding using filter bank designs based on time domain aliasing cancellation, in Proceedings of the IEEE ICASSP’87, Dallas, TX, April (1987), pp. 2161–2164Google Scholar
  14. 86.
    G.W. Stewart, Gaussian elimination, in Matrix Algorithms, Volume I: Basic Decompositions, Chap. 3 (SIAM Society for Industrial and Applied Mathematics, Philadelpha, PA, 1998), pp. 149–250Google Scholar
  15. 87.
    J. Wu, H. Shu, L. Senhadji, L. Luo, Mixed-radix algorithm for the computation of forward and inverse MDCTs. IEEE Trans. Circuits Syst. Regul. Pap. 56(4), 784–794 (2009)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Vladimir Britanak
    • 1
  • K. R. Rao
    • 2
  1. 1.Institute of InformaticsSlovak Academy of SciencesBratislavaSlovakia
  2. 2.The University of Texas at ArlingtonArlingtonUSA

Personalised recommendations