Glomerulus Classification with Convolutional Neural Networks

  • Anibal Pedraza
  • Jaime Gallego
  • Samuel Lopez
  • Lucia Gonzalez
  • Arvydas Laurinavicius
  • Gloria BuenoEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 723)


Glomerulus classification in kidney tissue segments is a key process in nephropathology to obtain correct diseases diagnosis. In this paper, we deal with the challenge to automate the Glomerulus classification from digitized kidney slide segments using a deep learning framework. The proposed method applies Convolutional Neural Networks (CNNs) classification between two classes: Glomerulus and Non-Glomerulus, to detect the image segments belonging to Glomerulus regions. We configure the CNN with the public pre-trained AlexNet model, and adapt it to our system by learning from Glomerulus and Non-Glomerulus regions extracted from training slides. Once the model is trained, the labelling is performed applying the CNN classification to the image segments under analysis. The results obtained indicate that this technique is suitable for correct Glomerulus classification, showing robustness while reducing false positive and false negative detections.


Glomerulus classification Digital pathology Nephropathology Convolutional neural networks 



This project has received funding from the European Union’s FP7 programme under grant agreement no: 612471.


  1. 1.
    Bueno, G., Fernandez-Carrobles, M.M., Deniz, O., Garcia-Rojo, M.: New trends of emerging technologies in digital pathology. Pathobiology 83(2–3), 61–69 (2016)CrossRefGoogle Scholar
  2. 2.
    Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inform. 7, 29 (2016)CrossRefGoogle Scholar
  3. 3.
    Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 (2016)CrossRefGoogle Scholar
  4. 4.
    Hughson, M.D., Puelles, V.G., Hoy, W.E., Douglas-Denton, R.N., Mott, S.A., Bertran, J.F.: Hypertension, glomerular hypertrophy and nephrosclerosis: the effect of race. Nephrol. Dial. Transplant. 29(7), 1399–1409 (2014)CrossRefGoogle Scholar
  5. 5.
    Rasch, R., Lauszus, F., Thomsen, J.S., Flyvbjerg, A.: Glomerular structural changes in pregnant, diabetic, and pregnant diabetic rats. Apmis 113(78), 465–472 (2005)CrossRefGoogle Scholar
  6. 6.
    Ma, J., Jun, Z., Jinglu, H.: Glomerulus extraction by using genetic algorithm for edge patching. In: IEEE Congress on Evolutionary Computation (2009)Google Scholar
  7. 7.
    Hirohashi, Y., Relator, R., Kakimoto, T., Saito, R., Horai, Y., Fukunari, A., Kato, T.: Automated quantitative image analysis of glomerular desmin immunostaining as a sensitive injury marker in spontaneously diabetic torii rats. J. Biomed. Image Process 1(1), 208 (2014)Google Scholar
  8. 8.
    Kakimoto, T., Okada, K., Fujitaka, K., Nishio, M., Kato, T., Fukunari, A., Utsumi, H.: Quantitative analysis of markers of podocyte injury in the rat puromycin aminonucleoside nephropathy model. Exp. Toxicol. Pathol. 67(2), 171–177 (2015)CrossRefGoogle Scholar
  9. 9.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection In: International Confernce on Computer Vision and Pattern Recognition, vol. 1 (2005)Google Scholar
  10. 10.
    Kato, T., Relator, R., Ngouv, H., Hirohashi, Y., Takaki, O., Kakimoto, T., Okada, K.: Segmental HOG: new descriptor for glomerulus detection in kidney microscopy image. BMC Bioinform. 16(1), 316 (2015)CrossRefGoogle Scholar
  11. 11.
    Boser, B. E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. ACM (1992)Google Scholar
  12. 12.
    Kotyk, T., Dey, N., Ashour, A.S., Balas-Timar, D., Chakraborty, S., Ashour, A.S., Tavares, J.M.R.: Measurement of glomerulus diameter and Bowman’s space width of renal albino rats. Comput. Methods Programs Biomed. 126, 143–153 (2016)CrossRefGoogle Scholar
  13. 13.
    Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1(4), 132–133 (1972)CrossRefzbMATHGoogle Scholar
  14. 14.
    Zhang, M., Wu, T., Bennett, K.M.: A novel Hessian based algorithm for rat kidney glomerulus detection in 3D MRI. In: SPIE Medical Imaging. International Society for Optics and Photonics (2015)Google Scholar
  15. 15.
    Kothari, S., Phan, J.H., Stokes, T.H., Wang, M.D.: Pathology imaging informatics for quantitative analysis of whole-slide images. J. Am. Med. Inform. Assoc. 20(6), 1099–1108 (2013)CrossRefGoogle Scholar
  16. 16.
    Wang, H., Cruz-Roa, A., Basavanhally, A., Gilmore, H., Shih, N., Feldman, M., Madabhushi, A.: Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J. Med. Imaging 1(3), 034003 (2014)CrossRefGoogle Scholar
  17. 17.
    Malon, C.D., Cosatto, E.: Classification of mitotic figures with convolutional neural networks and seeded blob features. J. Pathol. Inform. 4(1), 9 (2013)CrossRefGoogle Scholar
  18. 18.
    Xu, K., Zhu, L., Wang, R., Liu, C., Zhao, Y.: Automated detection of diabetic retinopathy using deep convolutional neural networks. Med. Phys. 43(6), 3406 (2016)CrossRefGoogle Scholar
  19. 19.
    Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Larochelle, H.: Brain tumour segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRefGoogle Scholar
  20. 20.
    Agarwal, S.K., Sethi, S., Dinda, A.K.: Basics of kidney biopsy: a nephrologist’s perspective. Indian J. Nephrol. 23(4), 243 (2013)CrossRefGoogle Scholar
  21. 21.
    Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  22. 22.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)Google Scholar
  23. 23.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anibal Pedraza
    • 1
  • Jaime Gallego
    • 1
  • Samuel Lopez
    • 1
  • Lucia Gonzalez
    • 2
  • Arvydas Laurinavicius
    • 3
  • Gloria Bueno
    • 1
    Email author
  1. 1.University of Castilla La ManchaCiudad RealSpain
  2. 2.Hospital General UniversitarioCiudad RealSpain
  3. 3.Vilnius University Hospital Santariskes Clinics and Vilnius UniversityVilniusLithuania

Personalised recommendations