Evaluating Alzheimer’s Disease Diagnosis Using Texture Analysis

  • Francisco Jesús Martinez-MurciaEmail author
  • Juan Manuel Górriz
  • Javier Ramírez
  • Fermin Segovia
  • Diego Salas-Gonzalez
  • Diego Castillo-Barnes
  • Ignacio A. Illán
  • Andres Ortiz
  • for the Alzheimer’s Disease Neuroimaging Initiative
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 723)


Many advanced automated systems have been proposed for the diagnosis of Alzheimer’s Disease (AD). Most of them use Magnetic Resonance Imaging (MRI) as input data, since it provides high resolution images of the structure of the brain. Usually, Computer Aided Diagnosis (CAD) systems are based on massive univariate test and classification, although many strategies based on signal decomposition have been proposed for feature extraction in MRI images. In this work, we propose a novel analysis technique comprising the texture analysis of different cortical and subcortical structures in the brain. The procedure shows promising results, achieving up to 81.3% accuracy in the diagnosis task, and up to 79.6% accuracy using only one texture measure at the most discriminant region. These results prove the ability of textural analysis in the characterization of structural neurodegeneration of the brain, and paves the way to future longitudinal and conversion analyses.



This work was partly supported by the MINECO/ FEDER under the TEC2015-64718-R project and the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) under the Excellence Project P11-TIC- 7103.

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimers Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.


  1. 1.
    Alemán, Y., Melie, L., Valdés, P.: Ibaspm: toolbox for automatic parcellation of brain structures. In: 12th Annual Meeting of the Organization for Human Brain Mapping, pp. 11–15, June 2006Google Scholar
  2. 2.
    Alzheimer’s Association: 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 12(4), 459–509 (2016)CrossRefGoogle Scholar
  3. 3.
    Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. Neuroimage 11(6), 805–821 (2000)CrossRefGoogle Scholar
  4. 4.
    Baron, J.C., Chételat, G., Desgranges, B., Perchey, G., Landeau, B., de la Sayette, V., Eustache, F.: In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 14(2), 298–309 (2001)CrossRefGoogle Scholar
  5. 5.
    Dubois, B., Feldman, H.H., Jacova, C., DeKosky, S.T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., et al.: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6(8), 734–746 (2007)CrossRefGoogle Scholar
  6. 6.
    Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, Cambridge (2007)CrossRefGoogle Scholar
  7. 7.
    Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)CrossRefGoogle Scholar
  8. 8.
    Khedher, L., Ramírez, J., Górriz, J., Brahim, A., Segovia, F.: Early diagnosis of Alzheimers disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing 151, 139–150 (2015)CrossRefGoogle Scholar
  9. 9.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of International Joint Conference on AI, pp. 1137–1145 (1995)Google Scholar
  10. 10.
    Leandrou, S., Petroudi, S., Kyriacou, P.A., Reyes-Aldasoro, C.C., Pattichis, C.S.: An overview of quantitative magnetic resonance imaging analysis studies in the assessment of Alzheimer’s disease. In: Kyriacou, E., Christofides, S., Pattichis, C.S. (eds.) XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016. IP, vol. 57, pp. 281–286. Springer, Cham (2016). doi: 10.1007/978-3-319-32703-7_56 CrossRefGoogle Scholar
  11. 11.
    Lerch, J.P., Pruessner, J.C., Zijdenbos, A., Hampel, H., Teipel, S.J., Evans, A.C.: Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb. Cortex 15(7), 995–1001 (2005)CrossRefGoogle Scholar
  12. 12.
    Malpica, N., Ortuño, J.E., Santos, A.: A multichannel watershed-based algorithm for supervised texture segmentation. Pattern Recogn. Lett. 24(9), 1545–1554 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Martinez-Murcia, F., Górriz, J., Ramírez, J., Moreno-Caballero, M., Gómez-Río, M., Initiative, P.P.M., et al.: Parametrization of textural patterns in 123i-ioflupane imaging for the automatic detection of Parkinsonism. Med. Phys. 41(1), 012502 (2014)CrossRefGoogle Scholar
  14. 14.
    Martinez-Murcia, F., Górriz, J., Ramírez, J., Ortiz, A., The Alzheimers Disease Neuroimaging Initiative: A spherical brain mapping of MR images for the detection of Alzheimers disease. Curr. Alzheimer Res. 13(5), 575–588 (2016)CrossRefGoogle Scholar
  15. 15.
    Martínez-Murcia, F., Górriz, J., Ramírez, J., Puntonet, C., Salas-González, D.: Computer aided diagnosis tool for Alzheimer’s disease based on Mann-Whitney-Wilcoxon U-test. Expert Syst. Appl. 39(10), 9676–9685 (2012)CrossRefGoogle Scholar
  16. 16.
    Martinez-Murcia, F.J., Ortiz, A., Górriz, J.M., Ramírez, J., Illán, I.A.: A volumetric radial LBP projection of MRI brain images for the diagnosis of Alzheimer’s disease. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 19–28. Springer, Cham (2015). doi: 10.1007/978-3-319-18914-7_3 CrossRefGoogle Scholar
  17. 17.
    Martínez-Murcia, F.J., Górriz, J., Ramírez, J., Puntonet, C.G., Illán, I.: Functional activity maps based on significance measures and independent component analysis. Comput. Methods Programs Biomed. 111(1), 255–268 (2013)CrossRefGoogle Scholar
  18. 18.
    Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J., Alvarez Illán, I., Salas-González, D., Segovia, F., A.D.N.I.: Projecting MRI brain images for the detection of Alzheimer’s disease. Stud. Health Technol. Inform. 207, 225–233 (2015)Google Scholar
  19. 19.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Philips, C., Li, D., Raicu, D., Furst, J.: Directional Invariance of Co-occurrence Matrices within the Liver. In: International Conference on Biocomputation, Bioinformatics, and Biomedical Technologies, pp. 29–34 (2008)Google Scholar
  21. 21.
    Reyes-Aldasoro, C.C., Bhalerao, A.: The Bhattacharyya space for feature selection and its application to texture segmentation. Pattern Recogn. 39(5), 812–826 (2006)CrossRefzbMATHGoogle Scholar
  22. 22.
    Segovia, F., Górriz, J., Ramírez, J., Salas-Gonzalez, D., Álvarez, I.: Early diagnosis of Alzheimers disease based on partial least squares and support vector machine. Expert Syst. Appl. 40(2), 677–683 (2013)CrossRefGoogle Scholar
  23. 23.
    Stoeckel, J., Ayache, N., Malandain, G., Koulibaly, P.M., Ebmeier, K.P., Darcourt, J.: Automatic classification of SPECT images of Alzheimer’s disease patients and control subjects. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 654–662. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30136-3_80 CrossRefGoogle Scholar
  24. 24.
    Theodoridis, S., Pikrakis, A., Koutroumbas, K., Cavouras, D.: Introduction to Pattern Recognition: A Matlab Approach. Academic Press, Cambridge (2010)Google Scholar
  25. 25.
    Towey, D.J., Bain, P.G., Nijran, K.S.: Automatic classification of 123I-FP-CIT (DaTSCAN) SPECT images. Nucl. Med. Commun. 32(8), 699–707 (2011)CrossRefGoogle Scholar
  26. 26.
    Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the mni MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)CrossRefGoogle Scholar
  27. 27.
    Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)zbMATHGoogle Scholar
  28. 28.
    Zhang, J., Yu, C., Jiang, G., Liu, W., Tong, L.: 3D texture analysis on MRI images of Alzheimers disease. Brain Imaging Behav. 6(1), 61 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Francisco Jesús Martinez-Murcia
    • 1
    Email author
  • Juan Manuel Górriz
    • 1
  • Javier Ramírez
    • 1
  • Fermin Segovia
    • 1
  • Diego Salas-Gonzalez
    • 1
  • Diego Castillo-Barnes
    • 1
  • Ignacio A. Illán
    • 2
  • Andres Ortiz
    • 3
  • for the Alzheimer’s Disease Neuroimaging Initiative
  1. 1.Department of Signal Theory, Networking and CommunicationsUniversity of GranadaGranadaSpain
  2. 2.Department of Scientific ComputingThe Florida State UniversityTallahasseeUSA
  3. 3.Department of Communications EngineeringUniversity of MálagaMálagaSpain

Personalised recommendations