Advertisement

Tree-Based Ensemble Learning Techniques in the Analysis of Parkinsonian Syndromes

  • J. M. GórrizEmail author
  • J. Ramírez
  • M. Moreno-Caballero
  • F. J. Martinez-Murcia
  • A. Ortiz
  • I. A. Illán
  • F. Segovia
  • D. Salas-González
  • M. Gomez-Rio
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 723)

Abstract

\(^{123}\)I-ioflupane single photon emission computed tomography (SPECT) is a standard and well-known imaging modality in the medical practice for the diagnosis of Parkinson’s disease (PD). That said, atypical parkinsonian syndrome (APS), a symptom-related disease to PD, detection is yet considered inconsistent at least based on visual inspection on region of interests (ROIs). Although some machine learning approaches have been proposed in this regard, in this paper we take up this matter again by applying advanced image processing techniques based on ensemble learning in order to discriminate PD from the various APS, included in the group denominated as P plus. This study enrolled 168 subjects including followed-up patients with degenerative parkinsonism and normal controls undergoing \(^{123}\)I-ioflupane SPECT at the “Virgen de las Nieves” Hospital, Spain in the last years: 45 Normal, 75 PD, 31 APs (including multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) patients) and 17 controls. Several advanced ensemble techniques and feature extraction methods were applied voxel-wise to the analysis of the SPECT images using robust classifiers based on decision trees. The system is trained by means of boosting and bagging algorithms and their performance control is specified in terms of the classification error and the received operating characteristics curve (ROC) using 10-fold cross validation. By the use of these statistical validation methods it was possible to confirm that this modality may be useful for discriminating the abnormal patterns under study.

Keywords

Atypical parkinsonism Single photon emission computed tomography (SPECT) Ensemble pattern recognition Boosting Bagging Decision tress 

Notes

Acknowledgement

This work was partly supported by the MINECO/FEDER under the TEC2015-64718-R project and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) under the Excellence Project P11-TIC-7103.

References

  1. 1.
    Badoud, S., Ville, D.V.D., Nicastro, N., Garibotto, V., Burkhard, P.R., Haller, S.: Discriminating among degenerative parkinsonisms using advanced \(^{123}\)I-ioflupane SPECT analyses. NeuroImage: Clin. 12, 234–240 (2016)CrossRefGoogle Scholar
  2. 2.
    Focke, N.K., Helms, G., Scheewe, S., Pantel, P.M., Bachmann, C.G., Dechent, P., Ebentheuer, J., Mohr, A., Paulus, W., Trenkwalder, C.: Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls. Hum. Brain Mapp. 32(11), 1905–1915 (2011)CrossRefGoogle Scholar
  3. 3.
    Freund, Y.: A more robust boosting algorithm. arXiv preprint arXiv:0905.2138 (2009)
  4. 4.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Statist. 28(2), 337–407 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Friston, K., et al. (eds.): Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, Cambridge (2007)Google Scholar
  7. 7.
    Górriz, J.M., Lassl, A., Ramírez, J., Salas-Gonzalez, D., Puntonet, C., Lang, E.: Automatic selection of ROIs in functional imaging using gaussian mixture models. Neurosci. Lett. 460(2), 108–111 (2009)CrossRefGoogle Scholar
  8. 8.
    Gorriz, J.M., Ramirez, J., Illan, I.A., Martinez-Murcia, F.J., Segovia, F., Salas-Gonzalez, D.: Case-based statistical learning applied to SPECT image classification. In: SPIE, Medical Imaging, Computer-Aided Diagnosis, vol. 78, pp. 1–4 (2017)Google Scholar
  9. 9.
    Górriz, J.M., Ramírez, J., Lassl, A., Salas-González, D., Lang, E.W., Puntonet, C.G., Álvarez, I., López, M., Gómez-Río, M.: Automatic computer aided diagnosis tool using component-based SVM. In: 2008 IEEE Nuclear Science Symposium Conference Record, pp. 4392–4395 (2008)Google Scholar
  10. 10.
    Górriz, J.M., Segovia, F., Ramírez, J., Lassl, A., Salas-Gonzalez, D.: GMM based SPECT image classification for the diagnosis of Alzheimer’s disease. Appl. Soft Comput. 11(2), 2313–2325 (2011). http://dx.doi.org/10.1016/j.asoc.2010.08.012 CrossRefGoogle Scholar
  11. 11.
    Haller, S., Badoud, S., Nguyen, D., Barnaure, I., Montandon, M.L., Lovblad, K.O., Burkhard, P.: Differentiation between Parkinson disease and other forms of Parkinsonism using support vector machine analysis of susceptibility-weighted imaging (SWI): initial results. Eur. Radiol. 23(1), 12–19 (2013)CrossRefGoogle Scholar
  12. 12.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hu, Z., Pan, Z., Lu, H., Li, W.: Classification of Alzheimer’s disease based on cortical thickness using AdaBoost and combination feature selection method. In: Wu, Y. (ed.) ICCIC 2011. CCIS, vol. 234, pp. 392–401. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24091-1_51 CrossRefGoogle Scholar
  14. 14.
    Illán, I., Górriz, J., Ramírez, J., Segovia, F., Jiménez-Hoyuela, J., Ortega Lozano, S.: Automatic assistance to Parkinson’s disease diagnosis in datscan spect imaging. Med. Phys. 39(10), 5971–5980 (2012)CrossRefGoogle Scholar
  15. 15.
    Tatsch, K.: Extrapyramidal syndromes: PET and SPECT. In: Hodler, J.J., von Schulthess, G.K., Zollikofer, C.L. (eds.) Diseases of the Brain, Head & Neck, Spine, pp. 234–239. Springer, Milan (2008). doi: 10.1007/978-88-470-0840-3_36 CrossRefGoogle Scholar
  16. 16.
    Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J., Illán, I., Ortiz, A., Initiative, P.P.M., et al.: Automatic detection of Parkinsonism using significance measures and component analysis in datscan imaging. Neurocomputing 126, 58–70 (2014)CrossRefGoogle Scholar
  17. 17.
    Morra, J.H., Tu, Z., Apostolova, L.G., Green, A.E., Avedissian, C., Madsen, S.K., Parikshak, N., Toga, A.W., Jack, C.R., Schuff, N., et al.: Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer’s disease, mild cognitive impairment, and elderly controls. Neuroimage 45(1), S3–S15 (2009)CrossRefGoogle Scholar
  18. 18.
    Morra, J.H., Tu, Z., Apostolova, L.G., Green, A.E., Toga, A.W., Thompson, P.M.: Comparison of AdaBoost and support vector machines for detecting Alzheimer’s disease through automated hippocampal segmentation. IEEE Trans. Med. Imaging 29(1), 30 (2010)CrossRefGoogle Scholar
  19. 19.
    Ramírez, J., Górriz, J., Segovia, F., Chaves, R., Salas-Gonzalez, D., López, M., Álvarez, I., Padilla, P.: Computer aided diagnosis system for the Alzheimer’s disease based on partial least squares and random forest spect image classification. Neurosci. Lett. 472(2), 99–103 (2010)CrossRefGoogle Scholar
  20. 20.
    Ramírez, J., Górriz, J.M., Ortiz, A., Padilla, P., Martínez-Murcia, F.J.: Ensemble tree learning techniques for magnetic resonance image analysis. In: Chen, Y.-W., Toro, C., Tanaka, S., Howlett, R.J., Jain, L.C. (eds.) Innovation in Medicine and Healthcare 2015. SIST, vol. 45, pp. 395–404. Springer, Cham (2016). doi: 10.1007/978-3-319-23024-5_36 CrossRefGoogle Scholar
  21. 21.
    Ramírez, J., Górriz, J.M., Martínez-Murcia, F.J., Segovia, F., Salas-Gonzalez, D.: Magnetic resonance image classification using nonnegative matrix factorization and ensemble tree learning techniques. In: 2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP). pp. 1–5, September 2016Google Scholar
  22. 22.
    Salas-González, D., Górriz, J.M., Ramírez, J., Lassl, A., Puntonet, C.G.: Improved Gauss-Newton optimization methods in affine registration of SPECT brain images. IET Electron. Lett. 44(22), 1291–1292 (2008)CrossRefGoogle Scholar
  23. 23.
    Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Statist. 26(5), 1651–1686 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Segovia, F., Górriz, J., Ramírez, J., Alvarez, I., Jiménez-Hoyuela, J., Ortega, S.: Improved Parkinsonism diagnosis using a partial least squares based approach. Med. Phys. 39(7), 4395–4403 (2012)CrossRefGoogle Scholar
  25. 25.
    Segovia, F., Illán, I.A., Górriz, J.M., Ramírez, J., Rominger, A., Levin, J.: Distinguishing Parkinson’s disease from atypical Parkinsonian syndromes using PET data and a computer system based on support vector machines and bayesian networks. Front. Comput. Neurosci. 9, 137 (2014)Google Scholar
  26. 26.
    Williams, D., Litvan, I.: Parkinsonian syndromes. Continuum?: Lifelong Learn. Neurol. 5, 1189–1212 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • J. M. Górriz
    • 1
    Email author
  • J. Ramírez
    • 1
  • M. Moreno-Caballero
    • 2
  • F. J. Martinez-Murcia
    • 1
  • A. Ortiz
    • 4
  • I. A. Illán
    • 3
  • F. Segovia
    • 1
  • D. Salas-González
    • 1
  • M. Gomez-Rio
    • 2
  1. 1.Department of Signal Theory and CommunicationsUniversity of GranadaGranadaSpain
  2. 2.Hospital Virgen de Las NievesGranadaSpain
  3. 3.Department of Scientific ComputingThe Florida State UniversityTallahasseeUSA
  4. 4.Department Communication EngineeringUniversity of MalagaMalagaSpain

Personalised recommendations