Improved Reference Tracts for Unsupervised Brain White Matter Tractography

  • Susana Muñoz Maniega
  • Mark E. Bastin
  • Ian J. Deary
  • Joanna M. Wardlaw
  • Jonathan D. Clayden
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 723)


Neighbourhood tractography aims to automatically segment equivalent brain white matter tracts from diffusion magnetic resonance imaging (dMRI) data in different subjects by using a “reference tract” as a prior for the shape and length of each tract of interest. In the current work we present a means of improving the technique by using references tracts derived from dMRI data acquired from 80 healthy volunteers aged 25–64 years. The reference tracts were tested on the segmentation of 16 major white matter tracts in 50 healthy older people, aged 71.8 (±0.4) years. We found that data-generated reference tracts improved the automatic white matter tract segmentations compared to results from atlas-generated reference tracts. We also obtained higher percentages of visually acceptable segmented tracts and lower variation in water diffusion parameters using this approach.


MRI Brain White matter Unsupervised segmentation Tractography 



LBC1936 was supported by the Age UK-funded Disconnected Mind project, with additional funding from the UK Medical Research Council (MR/M013111/1). MRI scanning for the training dataset was funded under NIH grant R01 EB004155-03. The scanning was performed at the Brain Research Imaging Centre, Edinburgh, part of Edinburgh Imaging ( and the SINAPSE Collaboration (Scottish Imaging Network, A Platform for Scientific Excellence,


  1. 1.
    Tournier, J.D., Mori, S., Leemans, A.: Diffusion tensor imaging and beyond. Magn. Reson. Med. 65, 1532–1556 (2011). doi: 10.1002/mrm.22924 CrossRefGoogle Scholar
  2. 2.
    Clayden, J.D., Storkey, A.J., Muñoz Maniega, S., Bastin, M.E.: Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach. Neuroimage 45, 377–385 (2009). doi: 10.1016/j.neuroimage.2008.12.010 CrossRefGoogle Scholar
  3. 3.
    Clayden, J.D., Storkey, A.J., Bastin, M.E.: A probabilistic model-based approach to consistent white matter tract segmentation. IEEE Trans. Med. Imaging 26, 1555–1561 (2007). doi: 10.1109/TMI.2007.905826 CrossRefGoogle Scholar
  4. 4.
    Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zöllei, L., Augustinack, J., Wang, R., Salat, D., Ehrlich, S., Behrens, T., Jbabdi, S., Gollub, R., Fischl, B.: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Front. Neuroinform. 5, 23 (2011). doi: 10.3389/fninf.2011.00023 CrossRefGoogle Scholar
  5. 5.
    Muñoz Maniega, S., Bastin, M.E., McIntosh, A.M., Lawrie, S.M., Clayden, J.D.: Atlas-based reference tracts improve automatic white matter segmentation with neighbourhood tractography. In: ISMRM (ed.) Proceedings of ISMRM 16th Scientific Meeting and Exhibition, p. 3318 (2008)Google Scholar
  6. 6.
    Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D.S., Calabresi, P.A., Pekar, J.J., van Zijl, P.C., Mori, S.: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39, 336–347 (2008). doi: 10.1016/j.neuroimage.2007.07.053 CrossRefGoogle Scholar
  7. 7.
    Penke, L., Muñoz Maniega, S., Houlihan, L.M., Murray, C., Gow, A.J., Clayden, J.D., Bastin, M.E., Wardlaw, J.M., Deary, I.J.: White matter integrity in the splenium of the corpus callosum is related to successful cognitive aging and partly mediates the protective effect of an ancestral polymorphism in ADRB2. Behav. Genet. 40, 146–156 (2010). doi: 10.1007/s10519-009-9318-4 CrossRefGoogle Scholar
  8. 8.
    Dickie, D.A., Mikhael, S., Job, D.E., Wardlaw, J.M., Laidlaw, D.H., Bastin, M.E.: Permutation and parametric tests for effect sizes in voxel-based morphometry of gray matter volume in brain structural MRI. Magn. Reson. Imaging 33, 1299–1305 (2015). doi: 10.1016/j.mri.2015.07.014 CrossRefGoogle Scholar
  9. 9.
    Deary, I.J., Gow, A.J., Taylor, M.D., Corley, J., Brett, C., Wilson, V., Campbell, H., Whalley, L.J., Visscher, P.M., Porteous, D.J., Starr, J.M.: The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond. BMC Geriatr. 7, 28 (2007). doi: 10.1186/1471-2318-7-28 CrossRefGoogle Scholar
  10. 10.
    Jones, D.K., Williams, S.C.R., Gasston, D., Horsfield, M.A., Simmons, A., Howard, R.: Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time. Hum. Brain Mapp. 15, 216–230 (2002). doi: 10.1002/hbm.10018 CrossRefGoogle Scholar
  11. 11.
    Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002). doi: 10.1002/hbm.10062 CrossRefGoogle Scholar
  12. 12.
    Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001). doi: 10.1016/S1361-8415(01)00036-6 CrossRefGoogle Scholar
  13. 13.
    Clayden, J.D., Muñoz Maniega, S., Storkey, A.J., King, M.D., Bastin, M.E., Clark, C.A.: TractoR: magnetic resonance imaging and tractography with R. J. Stat. Softw. 44, 1–18 (2011). doi: 10.18637/jss.v044.i08 CrossRefGoogle Scholar
  14. 14.
    Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34, 144–155 (2007). doi: 10.1016/j.neuroimage.2006.09.018 CrossRefGoogle Scholar
  15. 15.
    Clayden, J.D., King, M.D., Clark, C.A.: Shape modelling for tract selection. In: Yang, G.Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 150–157. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04271-3_19 Google Scholar
  16. 16.
    Hill, C.S., Clayden, J.D., Kitchen, N., Bull, J., Harkness, W., Clark, C.A.: A feasibility study of neighbourhood tractography in the presence of paediatric brain tumours. In: Proceedings of Autumn Meeting of the Society of British Neurological Surgeons (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Susana Muñoz Maniega
    • 1
    • 2
  • Mark E. Bastin
    • 1
    • 2
  • Ian J. Deary
    • 2
    • 3
  • Joanna M. Wardlaw
    • 1
    • 2
  • Jonathan D. Clayden
    • 4
  1. 1.Department of Neuroimaging SciencesUniversity of EdinburghEdinburghUK
  2. 2.Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
  3. 3.Department of PsychologyUniversity of EdinburghEdinburghUK
  4. 4.UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK

Personalised recommendations