Superpixel-Based Line Operator for Retinal Blood Vessel Segmentation

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 723)


Automated detection of retinal blood vessels plays an important role in advancing the understanding of the mechanism, diagnosis and treatment of cardiovascular disease and many systemic diseases. Here, we propose a new framework for precisely segmenting vasculatures. The proposed framework consists of two steps. Inspired by the Retinex theory, a non-local total variation model is introduced to address the challenges posed by intensity inhomogeneities and relatively poor contrast. For better generalizability and segmentation performance, a superpixel based line operator is proposed as to distinguish between lines and the edges, and thus allows more tolerance in the position of the respective contours. The results on three public datasets show superior performance to its competitors, implying its potential for wider applications.


Vessel Segmentation Total variation Retinex Superpixel Line operator 



This work was supported by National Science Foundation Program of China (61601029, 61602322), China Association for Science and Technology (2016QNRC001), and National Key Research and Development Program of China (2016YFB0401202).


  1. 1.
    Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36, 81–121 (2004)CrossRefGoogle Scholar
  2. 2.
    Lesagea, D., Funka-Leaa, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13, 819–845 (2009)CrossRefGoogle Scholar
  3. 3.
    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images - a survey. Comput. Meth. Prog. Bio. 108, 407–433 (2012)CrossRefGoogle Scholar
  4. 4.
    Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)CrossRefGoogle Scholar
  5. 5.
    Soares, J., Cree, M.: Retinal vessel segmentation using the 2D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25, 1214–1222 (2006)CrossRefGoogle Scholar
  6. 6.
    Lupascu, C.A., Tegolo, D., Trucco, E.: FABC: retinal vessel segmentation using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 14, 1267–1274 (2010)CrossRefGoogle Scholar
  7. 7.
    You, X., Peng, Q., Yuan, Y., Cheung, Y., Lei, J.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn. 44, 2314–2324 (2011)CrossRefGoogle Scholar
  8. 8.
    Marin, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30, 146–158 (2011)CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Ji, G., Lin, P., Trucco, E.: Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recogn. 46, 2117–2133 (2013)CrossRefGoogle Scholar
  10. 10.
    Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26, 1357–1365 (2007)CrossRefGoogle Scholar
  11. 11.
    Mendonça, A., Campilho, A.C.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25, 1200–1213 (2007)CrossRefGoogle Scholar
  12. 12.
    Martinez-Perez, M., Hughes, A., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Med. Image Anal. 11, 47–61 (2007)CrossRefGoogle Scholar
  13. 13.
    Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE Trans. Med. Imaging 28, 1488–1497 (2009)CrossRefGoogle Scholar
  14. 14.
    Bankhead, P., McGeown, J., Curtis, T.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS ONE 7, e32435 (2009)CrossRefGoogle Scholar
  15. 15.
    Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 19, 46–57 (2015)CrossRefGoogle Scholar
  16. 16.
    Lathen, G., Jonasson, J., Borga, M.: Blood vessel segmentation using multi-scale quadrature filtering. Pattern Recogn. Lett. 31, 762–767 (2010)CrossRefGoogle Scholar
  17. 17.
    Orlandp, J., Prokofyeva, E., Blaschko, M.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 64, 16–27 (2017)CrossRefGoogle Scholar
  18. 18.
    Elad, M.: Retinex by two bilateral filters. Scale Space PDE Methods Comput. Vis. 3459, 217–229 (2005)CrossRefMATHGoogle Scholar
  19. 19.
    Ng, M.K., Wang, W.: A total variation model for retinex. SIAM J. Imaging Sci. 4, 345–365 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Zwiggelaar, R., Astley, S., Boggis, C., Taylor, C.: Linear structures in mammographic images: detection and classification. IEEE Trans. Med. Imaging 23, 1077–1086 (2004)CrossRefGoogle Scholar
  21. 21.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)CrossRefGoogle Scholar
  22. 22.
    Zhao, Y., Zhao, J., Yang, J., Liu, Y., Zhao, Y., Zheng, Y., Xia, L, Wang, Y.: Saliency driven vasculature segmentation with infinite perimeter active contour model. Neurocomputing (2017).
  23. 23.
    Zhao, Y., Rada, L., Chen, K., Zheng, Y.: Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 34, 1797–1807 (2015)CrossRefGoogle Scholar
  24. 24.
    Palomera-Prez, M., Martinez-Perez, M., Bentez-Prez, H., Ortega-Arjona, J.L.: Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans. Inf. Technol. Biomed. 14, 500–506 (2010)CrossRefGoogle Scholar
  25. 25.
    Yin, Y., Adel, M., Bourennane, S.: Retinal vessel segmentation using a probabilistic tracking method. Pattern Recogn. 45, 1235–1244 (2012)CrossRefMATHGoogle Scholar
  26. 26.
    Roychowdhury, S., Koozekanani, D., Parhi, K.: Iterative vessel segmentation of fundus images. IEEE Trans. Biomed. Eng. 62(7), 1738–1749 (2015)CrossRefGoogle Scholar
  27. 27.
    Zhang, J., Dashtbozorg, B., Bekkers, E., Pluim, P., Duits, B., Romeny, R.: Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans. Med. Imaging 35(12), 2631–2644 (2016)CrossRefGoogle Scholar
  28. 28.
    Li, Q., Feng, B., Xie, L., Liang, P., Zhang, H., Wang, T.: A crossmodality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35(1), 109–118 (2016)CrossRefGoogle Scholar
  29. 29.
    Zhao, Y., Liu, Y., Zheng, Y.: Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase. PLoS ONE 10, e0122332 (2015)CrossRefGoogle Scholar
  30. 30.
    Zhao, Y., Zheng, Y., Liu, Y., Yang, J., Zhao, Y., Chen, D., Wang, Y.: Intensity and compactness enabled saliency estimation for leakage detection in diabetic and malarial retinopathy. IEEE Trans. Med. Imaging 36, 51–63 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Georgetown Preparatory SchoolNorth BethesdaUSA
  2. 2.Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of OptoelectronicsBeijing Institute of TechnologyBeijingChina
  3. 3.EPSRC Centre for Innovative Manufacturing in Through-life Engineering ServicesCranfield UniversityCranfieldUK

Personalised recommendations