Solid Angle Based Ambient Obscurance in Image Space

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10325)


We derive a new approximation of ambient obscurance to improve the quality of state-of-the-art techniques used in real-time rendering. We attempt to stay close to the original definition of ambient obscurance and, while building on the deferred rendering approach, bring into image-space information that is suitable for accurate estimations of visibility that take account of the position and orientation of near occluding geometry. The approach is based on the approximation of a covered solid angle, considering the area of surfaces, and hemisphere partitioning that gives directional information about coverage, both done in image space. The immediate advantage of our technique is that we avoid over-occlusion caused by multiple occluders covering each other but covering from the same direction. In some cases our implementation achieves lower performance with respect to some currently popular and widely adopted screen-space ambient obscurance approximations, but still obtains real-time frame rates on the current generation of hardware.


Ambient Obscurance Screen-space Hemisphere partitioning 


  1. 1.
    Aalund, F.P.: A comparative study of screen-space ambient occlusion methods. Technical University of Denmark, Technical report (2013)Google Scholar
  2. 2.
    Bavoil, L., Sainz, M., Dimitrov, R.: Image-space horizon-based ambient occlusion. In: ACM SIGGRAPH 2008 Talks, p. 22. ACM (2008)Google Scholar
  3. 3.
    Bunnell, M.: Dynamic ambient occlusion and indirect lighting. In: GPU Gems, vol. 2, no. 2, pp. 223–233 (2005)Google Scholar
  4. 4.
    Crytek: Atrium Sponza Palace.
  5. 5.
    Filion, D., McNaughton, R.: Effects & techniques. In: ACM SIGGRAPH 2008 Games, pp. 133–164. ACM (2008)Google Scholar
  6. 6.
    Gravås, L.O.: Image-space ambient obscurance in WebGL. Technical report, Institutt for datateknikk og informasjonsvitenskap (2013)Google Scholar
  7. 7.
    Khanna, P., Slater, M., Mortensen, J., Yu, I.: A non-parametric guide for radiance sampling in global illumination. In: Computer Graphics, Imaging and Visualisation, CGIV 2007, pp. 41–48 (2007)Google Scholar
  8. 8.
    Langer, M.S., Bülthoff, H.H.: Depth discrimination from shading under diffuse lighting. Perception 29(6), 649–660 (2000)CrossRefGoogle Scholar
  9. 9.
    McGuire, M., Mara, M., Luebke, D.: Scalable ambient obscurance. In: Proceedings of the Fourth ACM SIGGRAPH/Eurographics Conference on High-Performance Graphics, pp. 97–103. Eurographics Association (2012)Google Scholar
  10. 10.
    McGuire, M., Osman, B., Bukowski, M., Hennessy, P.: The alchemy screen-space ambient obscurance algorithm. In: Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, pp. 25–32. ACM (2011)Google Scholar
  11. 11.
    Mittring, M.: Finding next gen: CryEngine 2. In: ACM SIGGRAPH 2007 Courses, pp. 97–121. ACM (2007)Google Scholar
  12. 12.
    Oosterom, A.V., Strackee, J.: The solid angle of a plane triangle. IEEE Trans. Biomed. Eng. BME 30(2), 125–126 (1983)CrossRefGoogle Scholar
  13. 13.
    Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco (2010)Google Scholar
  14. 14.
    Ritschel, T., Dachsbacher, C., Grosch, T., Kautz, J.: The state of the art in interactive global illumination. Comput. Graph. Forum 31(1), 160–188 (2012)CrossRefGoogle Scholar
  15. 15.
    Ritschel, T., Grosch, T., Seidel, H.P.: Approximating dynamic global illumination in image space. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, pp. 75–82. ACM (2009)Google Scholar
  16. 16.
    Shanmugam, P., Arikan, O.: Hardware accelerated ambient occlusion techniques on GPUs. In: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, pp. 73–80. ACM (2007)Google Scholar
  17. 17.
    Timonen, V.: Line-sweep ambient obscurance. In: Computer Graphics Forum (Proceedings of EGSR 2013), vol. 32, no. 4, pp. 97–105 (2013)Google Scholar
  18. 18.
    Timonen, V.: Screen-space far-field ambient obscurance. In: Proceedings of the 5th High-Performance Graphics Conference, HPG 2013, pp. 33–43. ACM, New York (2013)Google Scholar
  19. 19.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  20. 20.
    Zhukov, S., Iones, A., Kronin, G.: An ambient light illumination model. In: Drettakis, G., Max, N. (eds.) Rendering Techniques 1998. Eurographics, pp. 45–55. Springer, Vienna (1998)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.SpinVectorBeneventoItaly
  2. 2.Dipartimento di Matematica, Informatica ed EconomiaUniversità degli Studi della BasilicataPotenzaItaly

Personalised recommendations