Advertisement

RRT* GL Based Path Planning for Virtual Aerial Navigation

  • Wilbert G. Aguilar
  • Stephanie Morales
  • Hugo Ruiz
  • Vanessa Abad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10324)

Abstract

In this paper, we describe a path planning system for virtual navigation based on a RRT combination of RRT* Goal and Limit. The propose system includes a point cloud obtained from the virtual workspace with a RGB-D sensor, an identification module for interest regions and obstacles of the environment, and a collision-free path planner based on Rapidly-exploring Random Trees (RRT) for a safe and optimal virtual navigation of UAVs in 3D spaces.

Keywords

Path planning RRT Point cloud registration 3D modeling Mobile robotics RGB-D segmentation Computational geometry 

Notes

Acknowledgement

This work is part of the projects VisualNavDrone 2016-PIC-024 and MultiNavCar 2016-PIC-025, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

References

  1. 1.
    Aguilar, W.G., Angulo, C.: Estabilización de vídeo en micro vehículos aéreos y su aplicación en la detección de caras. In: IX Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2014)Google Scholar
  2. 2.
    Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)CrossRefGoogle Scholar
  3. 3.
    Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 1, 1–13 (2014)Google Scholar
  4. 4.
    Aguilar, W.G., Angulo, C.: Robust video stabilization based on motion intention for low-cost micro aerial vehicles. In: 11th International Multi-Conference on Systems, Signals & Devices (SSD), Barcelona, Spain (2014)Google Scholar
  5. 5.
    Koren, Y.: Robotics for Engineers (1998)Google Scholar
  6. 6.
    Aguilar, W.G., Angulo, C., Costa, R., Molina, L.: Control autónomo de cuadricópteros para seguimiento de trayectorias. In: IX Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2014)Google Scholar
  7. 7.
    Vasishth, O., Gigras, Y.: Path planning problem. Int. J. Comput. Appl. 104(2) (2014)Google Scholar
  8. 8.
    Cabras, P., Rosell, J., Pérez, A., Aguilar, W.G., Rosell, A.: Haptic-based navigation for the virtual bronchoscopy. In: 18th IFAC World Congress, Milano, Italy (2011)Google Scholar
  9. 9.
    Henry, P., Krainin, P., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments. In: The 12th International Symposium on Experimental Robotics (ISER) (2010)Google Scholar
  10. 10.
    Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: IEEE International Conference on Robotics and Automation, San Francisco (2000)Google Scholar
  11. 11.
    Gutmann, J.-S., Fukuchi, M., Fujita, M.: 3D perception and environment map generation for humanoid robot navigation. Int. J. Robot. Res. 27 (2008)Google Scholar
  12. 12.
    Oliver, A., Kang, S., Wunsche, B., MacDonald, B.: Using the kinect as a navigation sensor for mobile robotics. In: Conference on Image and Vision Computing New Zealand (2012)Google Scholar
  13. 13.
    Benavidez, P., Jamshidi, M.: Mobile robot navigation and target tracking system. In: The 6th International Conference on System of Systems Engineering, Albuquerque (2011)Google Scholar
  14. 14.
    Rao, D., Le, Q., Phoka, T., Quigley, M., Sudsang, A., Ng, A.Y.: Grasping novel objects with depth segmentation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei (2010)Google Scholar
  15. 15.
    Ali Shah, S.A., Bennamoun, M., Boussaid, F.: A novel algorithm for efficient depth segmentation using low resolution (kinect) images. In: IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland (2015)Google Scholar
  16. 16.
    Liu, J., Yang, J., Liu, H., Tian, X., Gao, M.: An improved ant colony algorithm for robot path planning. Soft. Comput. 21, 1–11 (2016)Google Scholar
  17. 17.
    Glasius, R., Komoda, A., Gielen, S.C.A.M.: Neural network dynamics for path planning and obstacle avoidance. Neural Netw. 8(1), 125–133 (2000)CrossRefzbMATHGoogle Scholar
  18. 18.
    Xin, D., Hua-hua, C., Wei-kang, G.: Neural network and genetic algorithm based global path planning in a static environment. J. Zhejiang Univ. Sci. A 6(6), 549–554 (2005-2006)Google Scholar
  19. 19.
    Seraji, H., Howard, A.: Behavior-based robot navigation on challenging terrain: a fuzzy logic approach. IEEE Trans. Robot. Autom. 18(3), 308–321 (2002)CrossRefGoogle Scholar
  20. 20.
    Kuffner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation, San Francisco (2000)Google Scholar
  21. 21.
    Devaurs, D., Siméon, T., Cortés, J.: Efficient sampling-based approaches to optimal path planning in complex cost spaces. In: Akin, H.L., Amato, N.M., Isler, V., Stappen, A.F. (eds.) Algorithmic Foundations of Robotics XI. STAR, vol. 107, pp. 143–159. Springer, Cham (2015). doi: 10.1007/978-3-319-16595-0_9 Google Scholar
  22. 22.
    Gammell, J.D., Srinivasa, S., Barfoot, T.: Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) (2014)Google Scholar
  23. 23.
    Hatledal, L.I.: Kinect v2 SDK 2.0 – Colored Point Clouds, 15 August 2015. http://laht.info/kinect-v2-colored-point-clouds/
  24. 24.
    Fankhauser, P., Bloesch, M., Rodriguez, D., Kaestner, R., Hutter, M. Siegwart, R.: Kinect v2 for mobile robot navigation: evaluation and modeling. In: 2015 International Conference on Advanced Robotics (ICAR), Istanbul (2015)Google Scholar
  25. 25.
    Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)CrossRefGoogle Scholar
  26. 26.
    Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. (2010)Google Scholar
  27. 27.
    Lachat, E., Hélene, M., Tania, L., Pierre, G.: Assessment and calibration of a RGB-D camera (Kinect v2 Sensor) towards a potential use for close-range 3D modeling. Remote Sens. 7(10) (2015)Google Scholar
  28. 28.
    Pagliari, D., Pinto, L.: Calibration of kinect for xbox one and comparison between the two generations of microsoft sensors. Sensors 15(11) (2015)Google Scholar
  29. 29.
    Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. 9, 272–290 (1997)CrossRefGoogle Scholar
  30. 30.
    Sreedhar, K., Panlal, B.: Enhancement of images using morphological transformations. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 4(1) (2012)Google Scholar
  31. 31.
    Aguilar, W.G., Angulo, C.: Compensación y aprendizaje de efectos generados en la imagen durante el desplazamiento de un robot. In: X Simposio CEA de Ingeniería de Control, Barcelona, Spain (2012)Google Scholar
  32. 32.
    Aguilar, W.G., Angulo, C.: Compensación de los efectos generados en la imagen por el control de navegación del robot Aibo ERS 7. In: VII Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2012)Google Scholar
  33. 33.
    Navon, E., Miller, O., Averbuch, A.: Color image segmentation based on adaptive local thresholds. Image Vis. Comput. 23, 69–85 (2005)CrossRefGoogle Scholar
  34. 34.
    Aguilar, W.G., Angulo, C.: Estabilización robusta de vídeo basada en diferencia de nivel de gris. In: VIII Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2013)Google Scholar
  35. 35.
    Sahoo, P.K., Soltani, S., Wong, A.K.C.: A survey of thresholding techniques. Comput. Vis. Graph. Image Process. 41, 233–260 (1988)CrossRefGoogle Scholar
  36. 36.
    The MathWorks, Inc.: Pcregrigid Documentation (2015). http://www.mathworks.com/help/vision/ref/pcregrigid.html. Accessed 24 Feb 2016
  37. 37.
    Corke, P.I.: Robotics, Vision & Control: Fundamental Algorithms in MATLAB. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wilbert G. Aguilar
    • 1
    • 2
    • 3
  • Stephanie Morales
    • 2
  • Hugo Ruiz
    • 1
    • 4
  • Vanessa Abad
    • 5
  1. 1.Dep. Seguridad y DefensaUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.CICTE Research CenterUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  3. 3.GREC Research GroupUniversitat Politècnica de CatalunyaBarcelonaSpain
  4. 4.PLM Research CenterPurdue UniversityLafayetteUSA
  5. 5.Universitat de BarcelonaBarcelonaSpain

Personalised recommendations