Advertisement

Robot Creation from Functional Specifications

  • Ankur M. MehtaEmail author
  • Joseph DelPreto
  • Kai Weng Wong
  • Scott Hamill
  • Hadas Kress-Gazit
  • Daniela Rus
Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 3)

Abstract

The design of new robots is often a time-intensive task requiring multi-disciplinary expertise, making it difficult to create custom robots on demand. To help address these issues, this work presents an integrated end-to-end system for rapidly creating printable robots from a Structured English description of desired behavior. Linear temporal logic (LTL) is used to formally represent the functional requirements from a structured task specification, and a modular component library is used to ground the propositions and generate structural specifications; complete mechanical, electrical, and software designs are then automatically synthesized. The ability and versatility of this system are demonstrated by sample robots designed in this manner.

Notes

Acknowledgements

This work was funded in part by NSF ExCAPE and grants #1240383 and #1138967 and NSF Graduate Research Fellowship 1122374, for which the authors express thanks.

References

  1. 1.
    Ayala, A.I.M, Andersson, S.B, Belta, C.: Probabilistic control from time-bounded temporal logic specifications in dynamic environments. In: Robotics and Automation (ICRA), pp. 4705–4710 (2012)Google Scholar
  2. 2.
    Bhatia, A., Kavraki, L.E., Vardi, M.Y.: Sampling-based motion planning with temporal goals. In: Robotics and Automation (ICRA), pp. 2689–2696 (2010)Google Scholar
  3. 3.
    Birkmeyer, P., Peterson, K., Fearing, R.S.: Dash: a dynamic 16g hexapedal robot. In: Intelligent Robots and Systems (IROS), pp. 2683–2689. IEEE (2009)Google Scholar
  4. 4.
    Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Demaine, E.D., Tachi, T.: Origamizer: a practical algorithm for folding any polyhedron (2009)Google Scholar
  6. 6.
    Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for mobile robots. In: Robotics and Automation (ICRA), pp. 2020–2025 (2005)Google Scholar
  7. 7.
    Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem proving to problem solving. In: Proceedings of the 2nd IJCAI, London, UK, pp. 608–620 (1971)Google Scholar
  8. 8.
    Finucane, C., Jing, G., Kress-Gazit, H.: LTLMoP: experimenting with language, temporal Logic and robot control. In: IROS, pp. 1988–1993 (2010)Google Scholar
  9. 9.
    Hoover, A.M., Fearing, R.S.: Fast scale prototyping for folded millirobots. In: Robotics and Automation (ICRA), 2008, pp. 886–892. IEEE (2008)Google Scholar
  10. 10.
    Hornby, G., Lipson, H., Pollack, J.: Generative representations for the automated design of modular physical robots. IEEE Trans. Robot. Autom. 19(4), 703–719 (2003)CrossRefGoogle Scholar
  11. 11.
    Karaman, S., Frazzoli, E.: Complex mission optimization for multiple-UAVs using linear temporal logic. In: American Control Conference, Seattle, WA, pp. 2003–2009 (2008)Google Scholar
  12. 12.
    Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems from temporal logic specifications. IEEE Trans. Autom. Control 53(1), 287–297 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Where’s Waldo? Sensor-based temporal logic motion planning. In: Robotics and Automation (ICRA), pp. 3116–3121 (2007)Google Scholar
  14. 14.
    Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Translating structured english to robot controllers. Adv. Robot. 22(12), 1343–1359 (2008)CrossRefGoogle Scholar
  15. 15.
    Lang, R.: Origami Design Secrets: Mathematical Methods for an Ancient Art. A K Peters/CRC Press, Boca Raton (2012)zbMATHGoogle Scholar
  16. 16.
    Livingston, S.C., Prabhakar, P., Jose, A.B., Murray, R.M.: Patching task-level robot controllers based on a local mu-calculus formula. In: Robotics and Automation (ICRA), pp. 4588–4595 (2013)Google Scholar
  17. 17.
    McDermott, D., et al.: PDDL – the planning domain definition language – version 1.2. Technical report, Yale Center for Computational Vision and Control (1998)Google Scholar
  18. 18.
    Mehta, A.M., DelPreto, J., Shaya, B., Rus, D.: Cogeneration of mechanical, electrical, and software designs for printable robots from structural specifications. In: Intelligent Robots and Systems (IROS) (2014)Google Scholar
  19. 19.
    Onal, C., Wood, R., Rus, D.: An origami-inspired approach to worm robots. IEEE/ASME Trans. Mechatronics 18(2), 430–438 (2013)CrossRefGoogle Scholar
  20. 20.
    Raman, V., et al.: Sorry Dave, I’m afraid I can’t do that: explaining unachievable robot tasks using natural language. In: Robotics: Science and Systems IX, Technische Universität Berlin, Berlin, Germany, 24 June–28 June 2013 (2013)Google Scholar
  21. 21.
    Romanishin, J., Gilpin, K., Rus, D.: M-blocks: momentum-driven, magnetic modular robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4288–4295 (2013)Google Scholar
  22. 22.
    Shimoyama, I., Miura, H., Suzuki, K., Ezura, Y.: Insect-like microrobots with external skeletons. IEEE Control Syst. 13(1), 37–41 (1993)CrossRefGoogle Scholar
  23. 23.
    Tama Software Ltd. Pepakura designer (2015). http://www.tamasoft.co.jp/pepakura-en/. Accessed 01 Apr 2015
  24. 24.
    Wolff, E.M., Topcu, U., Murray, R.M.: Optimization-based trajectory generation with linear temporal logic specifications. In: Robotics and Automation (ICRA), pp. 5319–5325 (2014)Google Scholar
  25. 25.
    Yim, M., Duff, D., Roufas, K.: PolyBot: a modular reconfigurable robot. In: Robotics and Automation (ICRA), vol. 1, pp. 514–520 (2000)Google Scholar
  26. 26.
    Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ankur M. Mehta
    • 1
    Email author
  • Joseph DelPreto
    • 2
  • Kai Weng Wong
    • 3
  • Scott Hamill
    • 3
  • Hadas Kress-Gazit
    • 3
  • Daniela Rus
    • 2
  1. 1.University of California, Los AngelesLos AngelesUSA
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.Cornell UniversityIthacaUSA

Personalised recommendations