Robotic Invention: Challenges and Perspectives for Model-Free Design Optimization of Dynamic Locomotion Robots

  • Luzius Brodbeck
  • Simon Hauser
  • Fumiya IidaEmail author
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 3)


To improve a robot’s performance at a given task, or to respond to changing requirements, shape adaptation can be beneficial. To efficiently explore complex behaviors, diverse morphologies must be generated and implemented. For continuous and autonomous design optimization, the robot has furthermore to be able to assess its own performance and in turn generate and implement adapted morphological designs. Here, we present the morphological adaptation of physical robotic agents to a locomotion task. The robots are automatically assembled by a robotic manipulator from elementary modules and the assembly process of each agent is encoded in a genotype. The genotypes of a robot population are optimized using an evolutionary algorithm based on real-world performance feedback. In the experiments, 500 genotypes were evaluated. To develop rich behavioral diversity, shape variations are beneficial. Analysis of the results highlights the influence of the fabrication constraints on shape diversity, which impose limitations especially for larger structures.


  1. 1.
    Brodbeck, L., Iida, F.: An extendible reconfigurable robot based on hot melt adhesives. Auton. Robots 39(1), 87–100 (2015). doi: 10.1007/s10514-015-9428-1
  2. 2.
    Brodbeck, L., Hauser, S., Iida, F.: Morphological evolution of physical robots through model-free phenotype development. PLoS ONE 10(6), e0128,444 (2015). doi: 10.1371/journal.pone.0128444
  3. 3.
    Kuehn, T., Rieffel, J.: Automatically designing and printing 3-D objects with EvoFab 0.2. Artif. Life 13, 372–378 (2012). doi: 10.7551/978-0-262-31050-5-ch049
  4. 4.
    Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., Murata, S.: Distributed self-reconfiguration of M-TRAN III modular robotic system. Int. J. Robot. Res. 27(3–4), 373–386 (2008). doi: 10.1177/0278364907085560 CrossRefGoogle Scholar
  5. 5.
    Lichtensteiger, L., Eggenberger, P.: Evolving the morphology of a compound eye on a robot. In: Third European Workshop on Advanced Mobile Robots, pp. 127–134 (1999). doi: 10.1109/EURBOT.1999.827631
  6. 6.
    Neubert, J., Lipson, H.: Soldercubes: a self-soldering self-reconfiguring modular robot system. Auton. Robots (2015). doi: 10.1007/s10514-015-9441-4
  7. 7.
    Nurzaman, S.G., Culha, U., Brodbeck, L., Wang, L., Iida, F.: Active sensing system with in situ adjustable sensor morphology. PLoS ONE 8(12), e84,090 (2013). doi: 10.1371/journal.pone.0084090
  8. 8.
    Peet, R.K.: The measurement of species diversity. Annu. Rev. Ecol. Syst. 5, 285–307 (1974)CrossRefGoogle Scholar
  9. 9.
    Peng, Z., Genewein, T., Braun, D.A.: Assessing randomness and complexity in human motion trajectories through analysis of symbolic sequences. Front. Hum. Neurosci. 8(168) (2014). doi: 10.3389/fnhum.2014.00168
  10. 10.
    Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318(5853), 1088–1093 (2007). doi: 10.1126/science.1145803 CrossRefGoogle Scholar
  11. 11.
    Revzen, S., Bhoite, M., Macasieb, A., Yim, M.: Structure synthesis on-the-fly in a modular robot. pp. 4797–4802 (2011). doi: 10.1109/IROS.2011.6094575
  12. 12.
    Sproewitz, A., Moeckel, R., Vespignani, M., Bonardi, S., Ijspeert, A.: Roombots: a hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot. Robot. Auton. Syst. 62(7), 1016–1033 (2014). doi: 10.1016/j.robot.2013.08.011 CrossRefGoogle Scholar
  13. 13.
    Wang, L., Iida, F.: Physical connection and disconnection control based on hot melt adhesives. IEEE/ASME Trans. Mechatron. 18(4), 1397–1409 (2013). doi: 10.1109/TMECH.2012.2202558 CrossRefGoogle Scholar
  14. 14.
    Wang, L., Brodbeck, L., Iida, F.: Mechanics and energetics in tool manufacture and use: a synthetic approach. J. R. Soc. Interface 11(100) (2014). doi: 10.1098/rsif.2014.0827
  15. 15.
    Weel, B., Crosato, E., Heinerman, J., Haasdijk, E., Eiben, A.: A robotic ecosystem with evolvable minds and bodies. pp. 165–172 (2014). doi: 10.1109/ICES.2014.7008736
  16. 16.
    Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007). doi: 10.1109/MRA.2007.339623

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Robotics and Intelligent Systems, ETH ZurichZurichSwitzerland
  2. 2.Biorobotics LaboratoryEPFL—Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations