Advertisement

Effective Generation of Dynamically Balanced Locomotion with Multiple Non-coplanar Contacts

  • Nicolas Perrin
  • Darwin Lau
  • Vincent Padois
Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 3)

Abstract

Studies of computationally and analytically convenient approximations of rigid body dynamics have brought valuable insight into the field of humanoid robotics. Additionally, they facilitate the design of effective walking pattern generators. Going further than the classical Zero Moment Point-based methods, this paper presents two simple and novel approaches to solve for 3D locomotion with multiple non-coplanar contacts. Both formulations use model predictive control to generate dynamically balanced trajectories with no restrictions on the center of mass height trajectory. The first formulation treats the balance criterion as an objective function, and solves the control problem using a sequence of alternating convex quadratic programs. The second formulation considers the criterion as constraints, and solves a succession of convex quadratically constrained quadratic programs.

Notes

Acknowledgements

The research presented in this paper was partially funded by the ROMEO2 project.

References

  1. 1.
    Aldebaran: The Romeo project. http://projetromeo.com/
  2. 2.
    Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18(6), 523–533 (1999)CrossRefGoogle Scholar
  4. 4.
    Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: An analytical method on real-time gait planning for a humanoid robot. In: IEEE/RAS International Conference on Humanoid Robots (Humanoids’04), pp. 640–655 (2004)Google Scholar
  5. 5.
    Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: Dynamics and balance of a humanoid robot during manipulation tasks. IEEE Trans. Robot. 22(3), 568–575 (2006)CrossRefGoogle Scholar
  6. 6.
    Herdt, A., Perrin, N., Wieber, P.: Walking without thinking about it. In: IEEE International Conference on Intelligent Robots and Systems (IROS’10), pp. 190–195 (2010)Google Scholar
  7. 7.
    Herdt, A., Perrin, N., Wieber, P.: LMPC based online generation of more efficient walking motions. In: IEEE/RAS International Conference on Humanoid Robotics (Humanoids’12), pp. 390–395 (2012)Google Scholar
  8. 8.
    Hirukawa, H., Hattori, S., Harada, K., Kajita, S., Kaneko, K., Kanehiro, F., Fujiwara, K., Morisawa, M.: A universal stability criterion of the foot contact of legged robots - adios ZMP. In: IEEE International Conference on Robotics and Automation (ICRA’06), pp. 1976–1983 (2006)Google Scholar
  9. 9.
    Inomata, K., Uchimura, Y.: 3DZMP-based control of a humanoid robot with reaction forces at 3-dimensional contact points. In: IEEE International Workshop on Advanced Motion Control, pp. 402–407 (2010)Google Scholar
  10. 10.
    Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’01), pp. 239–246 (2001)Google Scholar
  11. 11.
    Lee, S., Goswami, A.: Reaction Mass Pendulum (RMP): an explicit model for centroidal angular momentum of humanoid robots. In: IEEE International Conference on Robotics and Automation (ICRA’07), pp. 4667–4672 (2007)Google Scholar
  12. 12.
    Majumdar, A., Ahmadi, A.A., Tedrake, R.: Control design along trajectories with sums of squares programming. In: IEEE International Conference on Robotics and Automation (ICRA’13), pp. 4054–4061 (2013)Google Scholar
  13. 13.
    Mehanna, O., Huang, K., Gopalakrishnan, B., Konar, A., Sidiropoulos, N.D.: Feasible point pursuit and successive approximation of non-convex QCQPs. IEEE Signal Process. Lett. 22(7), 804–808 (2015)CrossRefGoogle Scholar
  14. 14.
    Moulard, T., Lamiraux, F., Bouyarmane, K., Yoshida, E., et al.: RobOptim: an optimization framework for robotics. In: The Robotics and Mechatronics Conference (ROBOMEC’13) (2013)Google Scholar
  15. 15.
    Posa, M., Cantu, C., Tedrake, R.: A direct method for trajectory optimization of rigid bodies through contact. Int. J. Robot. Res. 33(1), 69–81 (2014)CrossRefGoogle Scholar
  16. 16.
    Trinkle, J.C., Pang, J.S., Sudarsky, S., Lo, G.: On dynamic multi-rigid-body contact problems with coulomb friction. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 77(4), 267–279 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Vukobratović, M., Borovac, B.: Zero-moment point–thirty five years of its life. Int. J. Humanoid Robot. 1(1), 157–173 (2004)CrossRefGoogle Scholar
  18. 18.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wieber, P.: Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids’06), pp. 137–142 (2006)Google Scholar
  20. 20.
    Wieber, P.: Viability and predictive control for safe locomotion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’08), pp. 1103–1108 (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institut des Systèmes Intelligents et de Robotique (ISIR), CNRS UMR 7222Université Pierre et Marie CurieParisFrance

Personalised recommendations